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Introduction
Empirical educational assessment has become increas-

ingly important to educators and policy-makers who base

their decisions on scientific knowledge (e.g., Educational

Testing Service, 2018; Bundesministerium für Bildung und

Forschung, 2017, 2018; Nuffield Foundation, 2018). Fre-

quently, educational research relies on data collected in

large-scale assessments, of which many have been around

for decades such as the National Assessment of Educational

Progress (NAEP) in the United States or the international

Trends In Mathematics and Science Study (TIMSS) and the

Programme for International Student Assessment (PISA).

Lately, longitudinal measurement on an individual level

has become more popular. In Germany, the National Ed-

ucational Panel Study (NEPS) follows six distinct starting

cohorts from birth to retirement over the course of their

educational trajectories (Blossfeld & von Maurice, 2011)

and the Organisation for Economic Co-operation and De-

velopment (OECD) has launched a longitudinal extension

to PISA (Prenzel, Carstensen, Schöps, & Maurischat, 2006)

and the Programme for the International Assessment of

Adult Competencies (PIAAC) in Germany (PIAAC-L, Ramm-

stedt, Martin, Zabal, Carstensen, & Schupp, 2017). Findings

resulting from competence data collected in these stud-

ies have a huge impact on the perception of educational

systems, their strengths and weaknesses, and, accordingly,

how changes should be implemented (e.g., the German re-

action to the PISA 2000 results: Kerstan, 2011; Finetti, 2010;

Smolka, 2005).

Observed test data has to be calibrated, that is, latent

competencies (e.g., reading comprehension, mathematical

competence) are inferred from the responses of the partic-

ipants. This inference is accomplished by using models of

item response theory (IRT; OECD, 2012, 2014, 2017; Pohl &

Carstensen, 2012; Martin, Mullis, & Hooper, 2016; Martin,

Mullis, & Kennedy, 2007).

The next section presents an overview of popular item

response models for longitudinal settings and describes a

Bayesian approach for estimation, including posterior pre-
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dictive checking (PPC) and the widely applicable informa-

tion criterion (WAIC) as Bayesian approaches for model

evaluation. In particular, the probabilistic programming

language Stan is introduced as a way of implementing

these Bayesian IRT models. Finally, an empirical example

is presented to illustrate the longitudinal scaling of math-

ematical competence across two years in a sample of stu-

dents from grade 5.

Item Response Modeling
Unidimensional Item Response Models
Item response models derive latent abilities of respon-

dents and latent characteristics of items (e.g., difficulties)

from the probability of correctly responding to an item

or achieving a certain score on an item with more than

two response categories. A basic item response model was

introduced by Rasch (1960) and describes the binary re-

sponse Yij of person i on item j with two parameters: the
ability θi of person i and the difficulty βj of item j:

P (Yij = 1|θi, βj) = logit−1 (θi − βj) (1)

The Rasch model uses the logistic function to relate

the observed responses to the item response model (Rasch,

1960; Adams, Wilson, & Wang, 1997; Patz & Junker, 1999a)

although other link functions such as the cumulative dis-

tribution function (CDF) of the normal distribution can be

used as well (Albert, 1992; Béguin & Glas, 2001; Aßmann,

Gaasch, Pohl, & Carstensen, 2015, 2016). The logistic func-

tion can be transformed into the CDF of the normal dis-

tribution by adding a multiplicative constant D = 1.7 to
the equation (Bowling, Khasawneh, Kaewkuekool, & Cho,

2009). Abilities and item difficulties are, thus, located on a

common logit or probit scale.

The Rasch (1960) model assumes constant item slopes,

that is, all items discriminate comparably between subjects

with lower and higher competencies. In empirical applica-

tions, this assumption is frequently too strict (OECD, 2017).

Therefore, this constraint can be relaxed to include differ-

ent item slopes αj , thus, resulting in the two parameter lo-

gistic model (2PL; Birnbaum, 1968).

P (Yij |θi, αj , βj) = logit−1 (αjθi − βj) (2)

Considering multiple-choice items, that is, items with

several response possibilities of which only one is correct,

it is possible to guess the correct response without actually

knowing the answer. The three parameter model (Birn-

baum, 1968) takes guessing probabilities into account and

models an additional parameter γj as a lower asymptote
of the response probability.

P (Yij |θi, αj , βj , γj) =γj + (1− γj)
· logit−1 (αjθi − βj)

(3)

So far, only item response models for dichotomous

items have been considered. Frequently, aptitude tests also

include items with more than two categories. Polytomous

items can be modeled using so-called divide-by-total (e.g.,

the generalized partial credit model, GPCM; Muraki, 1992)

or difference models (e.g., the graded response model,

GRM; Samejima, 1969). Because difference and divide-

by-total models are empirically largely indistinguishable

(Naumenko, 2014), only the former will be considered. The

GRM is formulated as

P (Yij = q|ω) = P (Yijq)− P (Yijq+1) (4)

where ω is a collective term for the parameters of the
underlying model (e.g., the Rasch or 2PL model) and q is
the respective item category with q = 0, 1, . . . , Qj . Ad-

ditionally, an item category threshold κ is modeled. It is
added to the item difficulty (βj + κjq). The Qj + 2 thresh-
old parameters per item fulfill the ordering constraint

κj0 = −∞ < κj1 = 0 < · · · < κjQj < κjQj+1 = +∞

From the ordering constraint follows

P (Yij = q|ω) =


1− P (Yij = 1) if q = 0,

P (Yijq)− P (Yijq+1) if 1 ≤ q < Qj ,

P (Yijq) else.

(5)

As indicated by the name, difference models use the

difference in cumulative probabilities to solve the item to

model situations in which only partially correct answers

were given.

Longitudinal Item Response Modeling
Measuring change in abilities over time needs several pre-

requisites. There has to be overlapping information such

as persons participating on several measurement occa-

sions and test items or even complete test forms admin-

istered multiple times. Additionally, the latent correlation

between the abilities can be used. Multidimensional IRT

models are a natural way of incorporating all of this infor-

mation (Ackerman, 1989; Adams et al., 1997).

P (Yij = 1|~θi, ~αj , βj) = logit−1

(
t∑
z

αjzθiz − βj

)
(6)

Abilities are now modeled as the vector ~θi. The vector
contains T parameters, one for each measurement time
point. Similarly, the item parameters are now vectors of

lengthT . If measurement invariance holds for the item dif-
ficulties of common items, βjt can be simplified to βj . The
item slopes, on the other hand, are now rows of the design

matrixA of dimensions J ×T with J = J1 +J2 + · · ·+JT
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Figure 1 Longitudinal item response model for three measurement points with the total number of items J =
J1 + J2 + J3.

being the total number of items over all time points. The

matrix describeswhich itemswere used at whichmeasure-

ment time point.

If distinct abilities are to be estimated for each time

point, between multidimensional models should be em-

ployed, that is, all items load on a distinct latent ability (i.e.,

each row of A contains only one non-zero entry; Adams et
al., 1997). If change is to be modeled, within multidimen-

sional models should be used, that is, there are items that

load on more than one latent ability (i.e., each row of A
can contain multiple non-zero entries; Adams et al., 1997).

Moreover, valid longitudinal models require an important

constraint in the design matrix: all future latent abilities

must not influence previous abilities, that is, all loadings

of past test administration on future abilities must be con-

strained to zero (see Figure1).

For example, the design matrix for a within multidi-

mensional model with two measurement time points and

five items per time point can be defined as

1 0
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
1 1


A basic longitudinal item response model is, for exam-

ple, Embretson (1991)’s Multidimensional Rasch Model for

Learning and Change (MRMLC). It assumes constant load-

ings αj within and across time points (cf. Eq. 7) and test

repetition (i.e., all items are common across time points

and are assumed to be measurement invariant).

P (Yij = 1|~θi, βj) = logit−1

(
t∑
z

θiz − βj

)
(7)

Similar to the MRMLC, which is a longitudinal exten-

sion of the Rasch model, the other models presented above

can be formulated as multidimensional models. The longi-

tudinal 3PL model is

P (Yij |~θi, ~αj , βj , γj) =γj + (1− γj)·

logit
−1

(
t∑
z

αjzθiz − βj

)
(8)

Note that all item parameters have the subscript j. This
formulation assumes that the same test form has been ad-

ministered multiple times and that all items function the

same over several time points. By constraining the respec-

tive parameters, a longitudinal 2PL model or, again, the

MRMLC is obtained.

IRT Scaling Procedure
IRT scaling can be described as a five-step procedure: First,

proficiency test data has to be collected. Second, an IRT

model, for example, one of those presented above, has to

be agreed upon and estimated. Estimation methods can

be divided into maximum likelihood and Bayesian meth-

ods. The latter are described below. Third, the estimated

model has to be checked and compared to other models

that might also be suitable in theory. This step may in-

clude model tweaking and re-estimation and re-evaluation

of the models. Fourth, the best fitting model is chosen for

the data. If several models fit equally well, the most par-

simonious model is chosen. Fifth, if the aim of IRT scaling
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Table 1 Commonly used prior distributions in Bayesian item response modeling

Parameter Distribution Source (selection)
α lognormal or trun-

cated normal

Patz and Junker (1999a, 1999b), Béguin and Glas (2001), Sinharay, Johnson, and

Stern (2006)

β normal Patz and Junker (1999a, 1999b), Béguin and Glas (2001), Sinharay, Johnson, and

Stern (2006)

γ beta
1

Patz and Junker (1999b), Béguin and Glas (2001)

θ2 normal Patz and Junker (1999a, 1999b), Béguin and Glas (2001), Sinharay, Johnson, and

Stern (2006)

Z3
normal Patz and Junker (1999a, 1999b), Béguin and Glas (2001), Sinharay, Johnson, and

Stern (2006), Fox (2010), Albert (1992)

Note. Mostly, weakly-informative hyperparameters are chosen (limiting the support to sensible range within which the

distribution is reasonably diffuse). It is recommended to assess the appropriateness of the hyperparameters and prior

distributions empirically in sensitivity analyses.
1
For a more intuitive understanding of the functional shape, the pa-

rameters a and b can be transformed into mean ( a
a+b ) and weight (a + b). 2 To ensure model identification, mean and

variance of the latent ability are usually fixed to 0 and 1 (at the first time point in the longitudinal case).
3 Z: latent

response variable with realization Y (often used in data augmented Gibbs samplers; Béguin & Glas, 2001; Albert, 1992)

is producing ability estimates for further analysis, the esti-

mates have to be extracted from the model.

Bayesian estimation of longitudinal item response
models
In the last decades, Bayesian estimation of item response

models has become more viable due to increased compu-

tational power and, consequently, more popular (Albert,

1992; Béguin & Glas, 2001; Santos, Moura, Andrade, &

Gonçalves, 2016; Patz & Junker, 1999a, 1999b). Bayesian

estimation of item response models means that, next to

the information derived from the data collected in assess-

ments, prior knowledge about the model parameters is in-

corporated into the statistical model in the form of prior

distributions multiplied with the likelihood. Frequentist

maximum likelihood estimation, which is widely used for

IRT estimation in LSAs (Pohl & Carstensen, 2012; OECD,

2012), focuses solely on the optimization of the likelihood.

Powerful methods of numerical analysis make maximum

likelihood very efficient in lower-dimensional problems.

In higher dimensional problems, on the other hand, opti-

mization (especially numerical approximation of integrals)

becomes quite inefficient and Bayesian approximation of

integrals is more flexible and efficient (Betancourt, 2014).

Prior distributions

There are estimation schemes available for one to three

parameter logistic and normal ogive models with multidi-

mensional andmultilevel extensions (e.g., Fox &Glas, 2001;

Béguin & Glas, 2001; Santos et al., 2016). The aforemen-

tioned papers describe a variation of Markov Chain Monte

Carlo (MCMC) algorithms. Commonly used prior distribu-

tions are summarized in Table 1. For example, for the item

difficulty β and the proficiency θ typically normal distri-
butions are adopted (Béguin & Glas, 2001; Patz & Junker,

1999a), whereas the item discrimination can be modeled

using a lognormal prior (Béguin & Glas, 2001; Sinharay,

Johnson, & Stern, 2006). Sensitivity analyses are recom-

mended to decide on the appropriate prior distributions.

The competence data can be conceived as either bino-

mially (binary data) or multinomially (ordered data) dis-

tributed. Assuming local independence, the likelihood of

the 3PL item response model, for instance, can be formu-

lated as follows

L = P (Y |Θ, A, ~β,Γ) =∏
i

∏
j

P (Yij)
Yij · (1− P (Yij))

1−Yij (9)

The model is not identified (Béguin & Glas, 2001). To

achieve model identification, the standard normal distri-

bution is usually chosen as the prior distribution of the la-

tent ability. In the longitudinal case, the means and stan-

dard deviations of the second and later time points are al-

lowed to vary freely.

Following the separation strategy (Santos et al., 2016;

Alvarez, Niemi, & Simpson, 2014; Barnard, McCulloch,

& Meng, 2000), the co-variance structure of multidimen-

sional models can be broken down to the individual vari-

ances S2
and the correlation matrix R so that the covari-

ance matrix Σ = diag(S) · R · diag(S) is the product of
the correlation matrix and the diagonal matrices with the

standard deviations in the diagonal. The vector of stan-

dard deviationsS can bemodeled using a distributionwith
positive support (e.g., a lognormal, a truncated normal or
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a uniform distribution with lower boundary 0). Barnard

et al. (2000) proposed

fd(R|ν = T +1) ∝ (detR)
T (T−1)

2 −1(
∏
i

Rii)
− (T+1)

2 , (10)

with ν degrees of freedom, for the correlation matrix
R. The distribution ensures that themarginal distributions
of all individual correlation coefficients are uniform in the

interval [−1, 1].

Convergence checks

All MCMC algorithms require convergence checks. If the

algorithms do not converge to a stationary posterior dis-

tribution, all inference based on the estimated data is in-

valid. Convergence checks can be done graphically or by

using statistical indicators. Traceplots and autocorrelation

plots give an overview of how well and fast the chain con-

verged to a stationary distribution (Fox, 2010). Traceplots

can also be used to check mixing if multiple chains have

been initialized. The potential scale reduction factor R̂ also
serves this purpose (Gelman, Rubin, et al., 1992; Brooks &

Gelman, 1998). It compares the estimated variances within

and between chains. A detailed presentation on Bayesian

convergence checkeing is beyond the scope of this paper.

Interested readers are referred to introductory texts on

Bayes modeling such as Gelman et al. (2014), Fox (2010),

Kruschke (2014).

Model Evaluation
A number of errors can occur during the calibration of

a test. Some of them may originate in the test devel-

opment such as items that differentiate inappropriately

among groups (differential item functioning (DIF); Dorans

& Holland, 1992; Pohl & Carstensen, 2012) or do not dis-

criminate sufficiently between different levels of compe-

tence. If those items are not excluded from the analy-

sis and simply ignored, that is, not treated specially, the

results of the calibration could be biased. Similarly, the

model itself could have been a wrong choice from the mul-

titude of models available to describe similar situations.

Again, severely biased outcomes could be the result. The

switch from Rasch modeling to two parameter modeling

promoted by the PISA scientific board (OECD, 2017) is an

example for the second source of error that was fixed by

changing to a model that better fit the data. Hence, it is in-

dispensable to check the applied models. In the following,

two Bayesian ways of model checking will be described be-

cause this paper focuses on Bayesian IRT and many LSAs

publish Bayesian competence scores.

Posterior Predictive Checking
Posterior predictive checking (PPC) is a powerful Bayesian

model checking technique. There is rich literature on PPC

in the context of item response theory (Sinharay, 2003,

2005; Sinharay et al., 2006; Sinharay, Guo, von Davier, &

Veldkamp, 2009; Zhu & Stone, 2011, 2012; Li, Xie, & Jiao,

2017; Béguin & Glas, 2001; Fox, 2010). Also, posterior pre-

dictive model checking has been shown to be as accurate

in selecting the most appropriate model from a range of

candidate models as the DIC and the conditional predic-

tive ordinate, but even more informative than the latter

(Zhu & Stone, 2012). PPC draws on the property of a model

describing the generating model accurately enough to also

sufficiently describe future data from the same generating

model. That is, the model shows good predictive perfor-

mance. Accordingly, data is predicted from the posterior

predictive distribution (PPD) of the model

p(yrep|Y ) =

∫
P (yrep|ω)P (ω|Y )dω (11)

The PPD consists of the posterior distribution of a

modelP (ω|Y ) and the likelihood of the predicted data yrep

given the model parameters ω. In general, it is not neces-
sary to solve the integral. As most Bayesian algorithms use

Markov Chain Monte Carlo techniques, those algorithms

can be extended to also simulate from the PPD (Fox, 2010;

Rubin, 1984; Sinharay, 2006). Thus, the originally surveyed

data can be located in the PPD. If it is typical, the model fits

considerably well.

Discrepancy measures

To assess typicality, so-called discrepancy measures are

computed that summarize relevant characteristics of the

data. Relevance is, of course, determined by the question

at hand. In item response modeling, a number of discrep-

ancy measures have been proposed and tested in simula-

tion and field studies (e.g., Sinharay, 2006; Sinharay et al.,

2009; Fox, 2010; Béguin & Glas, 2001; Zhu & Stone, 2011,

2012; Li et al., 2017). Themost commonly used discrepancy

measures are given below.

Odds ratio of item pairs The global odds ratio (OR) is a
measure for binary item pairs. It has been shown useful

in detecting local item dependence and multidimensional-

ity, and even greater deviations from model implied item

slopes (Chen & Thissen, 1997; Sinharay et al., 2006; Fox,

2010; Li et al., 2017; Zhu & Stone, 2011, 2012). It is calcu-

lated as

OR =
n00n11
n10n01

with njj′ the number of subjects scoring j on the first and
j′ on the second item, with j, j′ = 0, 1.

Item-total correlation coefficient The item-total correla-
tion coefficient (ITC) is usually used to assess if a slope pa-

rameter is missing in the analysis, but also whether local

item dependence occurred (Sinharay et al., 2006; Sinharay
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et al., 2009; Li et al., 2017; Zhu & Stone, 2011, 2012). De-

pending on the item format (i.e., whether the items are

binary, ordered or even metric), the respective (i.e., bise-

rial, polyserial or Pearson) correlation coefficient has to be

used.

Observed Score Distribution The observed score distri-
bution (OSD) is based on the total scores of the subjects. It

is defined as

χ2
NC =

J∑
j=0

(NCj − E(NCj))
2

E(NCj)

with NCj=(0,1,...,J) as the number of subjects scoring

j items correctly, and NC = (NC0, . . . , NCJ). The OSD
is frequently used to assess the fit of the prior chosen for

the latent ability distribution, but also whether a pseudo-

guessing parameter is missing from the model (Sinharay et

al., 2006; Li et al., 2017; Béguin & Glas, 2001; Fox, 2010; Zhu

& Stone, 2011, 2012). The discrepancy can either be quan-

tified using the χ2
statistic or by graphic display, that is,

plotting the observed and predicted OSD in overlay (Li et

al., 2017). Sinharay et al. (2009) successfully used the total

score and grouped total score distributions in the context

of a latent regression model.

Yen’sQ1 Yen’sQ1 is used to assess global fit of latent trait

models (Yen, 1981, 1984). In PPC, it was used to detect vio-

lations to the functional form of the models (e.g., constant

item thresholds in generalized partial credit models; Zhu &

Stone, 2011, 2012; Li et al., 2017). After rank-ordering the

subjects according to their latent trait and splitting them

into ten evenly populated cells, it is calculated as

Q1j =

10∑
r=1

Nr(Ojr − Ejr)2

Ejr(1− Ejr)

with Nr , the number of subjects in cell r, Ojr , the ob-

served proportion of subjects scoring correctly on item j,
and Ejr = 1

Nr

∑Nr

k∈r P (Ykj = 1|~θk, ~αj , βj), the predicted
proportion of subjects scoring correctly on item j. The
global statistic Q1 =

∑J
j=1Q1j is the sum of the item

statistics.

Yen’s Q3 of item pairs Yen’s Q3 is defined as the correla-

tion of the residuals of an item pair across all individuals

(Yen, 1981, 1984).

Q3jj′ = cor(djdj′)

with dij = Yij − P (Yij = 1|~θi, ~αj , βj), the residual
term for item j. Unidimensionality is indicated by values
of zero. The statistic has been shown to capture deviations

from unidimensionality and local independence (Li et al.,

2017; Zhu & Stone, 2011, 2012).

The aforementioned discrepancy measures generally

worked well in the studies that employed them. Of course,

they only worked as far as they are designed to work (e.g.,

observed score distributions did not deliver conclusive re-

sults in Zhu and Stone (2011) or Li et al. (2017) because

neither study exhibited problems that were supposed to

be detected by the observed score distribution). Similarly,

under some conditions, the odds ratio statistic was more

efficient than theQ3 statistic and vice versa (Li et al., 2017).

In previous literature (Li et al., 2017) items with ex-

treme posterior predictive p-values (PPP values), for ex-

ample, less than 0.05 or greater than 0.95, were consid-

ered problematic. Ideally, PPP values, expressing the pro-

portion of replicated discrepancymeasures beingmore ex-

treme than the original data’s discrepancy measure, range

around 0.5 (Li et al., 2017; Meng, 1994; Gelman et al., 2013).

This signifies random deviation in the data and, thus, no

systematic errors in the model.

Widely Applicable Information Criterion
Thewidely applicable information criterion (WAIC;Watan-

abe, 2010) is a fully Bayesian alternative to the deviance in-

formation criterion (DIC; Spiegelhalter, Best, Carlin, & Van

Der Linde, 2002), remedying the DIC’s weak points (Vehtari

& Gelman, 2014; Vehtari, Gelman, & Gabry, 2017). The

WAIC is defined as

WAIC = −2 · (l̂pd− p̂waic) (12)

where l̂pd is the log pointwise predictive density computed
from posterior simulations of the likelihood and p̂waic is

the estimated effective number of parameters which is cal-

culated using the posterior variance of the lpd (Vehtari &

Gelman, 2014). The WAIC is an approximation of leave-

one-out cross-validation (Watanabe, 2010) and, thus, a

measure of predictive accuracy of the model (Vehtari &

Gelman, 2014).

Implementing Bayesian IRT in Stan
After defining a statistical model, it has to be implemented

in some statistical software. In the field of Bayesian es-

timation, Stan (Stan Development Team, 2017) is a very

powerful implementation of a Hamiltonian Monte Carlo

algorithm (Betancourt, 2017; Gelman et al., 2014) that al-

lows the fast and efficient exploration of posterior distri-

butions even in higher dimensions. There is a number of

articles giving tutorials on Stan (e.g., Luo & Jiao, 2018; Jiang

& Carter, 2018; Sorensen, Hohenstein, & Vasishth, 2016).

These are extended to multidimensional longitudinal IRT

modeling in this article and an account of posterior predic-

tive checking in Stan and R is given. Stan comes in a vari-

ety of different flavors, but because the analyses rely on R,
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rstan, the R interface for Stan, is used (Stan Development

Team, 2018). The installation of rstan is detailed on https://

github.com/stan-dev/rstan/wiki/RStan-Getting-Started and

is analogous to installing regular R packages.

In R, the models are estimated using the function

rstan::stan(). Expected a posteriori estimators can
be extracted from the final stanfit object using the func-
tion rstan::get_posterior_mean(). Usage details
are described in the rstan documentation. Similarly, the

Stan modeling language is detailed in the Stan user’s

guides. Both are accessible at https://mc-stan.org/users/

documentation/. This paper focuses on the model speci-

fication in the Stan modeling language. The model itself

can either be written as a character string in R or as a sep-

arate text file with the extension .stan. The latter is rec-

ommended for debugging purposes. If errors in the model

syntax occur, the line numbers given in the error messages

will match if themodel is stored in a separate file, but prob-

ably not if it is part of a larger R script. A Stan model is

composed of several blocks whose scope is limited by curly

braces. It always ends with a blank line.

The longitudinal three parameter logistic model
In the following section, the longitudinal three parameter

logistic model (Eq. 8) as the most complex model will be

implemented in Stan model code. It will be detailed code

block by code block. By imposing restrictions on the pa-

rameters, the two parameter logisticmodel (Eq. 2) or Rasch

model (Eq. 1) can be obtained. To obtain the graded re-

sponse model (Eq. 4), several major modifications need to

be implemented. The respective code for these other mod-

els is given in the online supplement. Note that at some

points generalizations (e.g., using the variable T for the
number of time points instead of directly writing 2) are

chosen. If the code is later to be adapted for more time

points, not all parts of the code have to be replaced.

The functions block

The functions block is optional. To use the density func-

tion of Barnard et al. (2000) (Eq. 10) for correlation ma-

trices, the block has to be specified using Listing 1 (all the

listings are collected in the Appendix). Note that the log

probability is returned because Stan operates only on log

probabilities. Furthermore, the names of probability den-

sity functions have to end in _log.

The data block

In the data block given in Listing 2, the input for rstan::
stan() is specified. Here, the observed test data is called
Y. It is a matrix of dimensions number of persons× number
of items over T time points.
The number of items per time point are modeled sep-

arately as elements of a vector to accommodate test repe-

titions with different numbers of items and perhaps only

a subset of common items. If the exact same test is ad-

ministered multiple times, the number of items J can be
modeled as a scalar.

The parameters block

The parameters block given in Listing 3 contains all param-

eters that are estimated. If common items exist between

time points, they have to be modeled by either estimating

the common items only once or by estimating all items as

unique items. In the latter case, the average of the common

item parameters is later used in the model likelihood.

The transformed parameters block

In the optional transformed parameters block seen in

Listing 4, the estimated parameters are transformed so

that they can be used in the estimation of other param-

eters. This includes linear transformations, aggregations

and reparameterizations. The order within this block is as

follows: first, the transformed parameters have to be de-

clared, then they can be defined.

Assuming test repetition, all item parameters are aver-

aged over time points. The item discrimination parameters

are estimated freely. The cross-loadings are stored in the

vector alpha[(sum(J) + 1) : (sum(J) + J [2])]. Mean and
variance of the latent ability of the first measurement time

point are fixed to 0 and 1 to ensure model identification.

The model block

In the model block (Listing 5), the prior distributions and

likelihood function are defined. Stan contains a number of

predefined distributions for this purpose. As in the trans-

formed parameters block, auxiliary variables have to be

declared in the beginning and can later be defined.

The model syntax can be simplified in case of the Rasch

and 2PL models by using bernoulli_logit() instead
of bernoulli(inv_logit()) in the likelihood func-
tion.

The generated quantities block

In the optional generated quantities block (Listing 6), the

replication of data in the context of PPC is declared. Stan

contains a number of random number generators for this

purpose. Thus, data is simulated based on the random pa-

rameter draws of each post-warmup iteration of the HMC

sampler. Note the nested looping over items and persons.

The random number generator does not support vectoriza-

tion. Furthermore, the log likelihood for the WAIC has to

be declared here because Stan generally does not differen-

tiate between likelihood and prior distribution in its com-

putations (Vehtari & Gelman, 2014).
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Again, the code can be simplified in the

Rasch and 2PL case to bernoulli_logit_rng
() instead of bernoulli_rng(inv_logit()
) and bernoulli_logit_lpmf() instead of

bernoulli_lpmf(inv_logit()). The next steps are
to run the model using the Stan interface of one’s choice

and then evaluate it.

Implementing Posterior Predictive Checking in R
The code that is presented in this section is based on the

data structures – replicated and estimated – returned by

the stan() function. The parameter rep used in the func-
tions denotes the number of replicated data sets per es-

timated model (i.e., the number of iterations minus the

warmup iterations and divided by the thinning interval).

The R code can be simplified to accommodate the original

data in wide format easily.

Odds ratio of item pairs
To speed up the computation, R’s vectorization was used.

Instead of looping over all replicated data sets, the prop-

erty that a three-dimensional array held constant in one

dimension becomes a matrix was used. Because the first

dimension of parameters estimated in Stan is always the

iteration, if the items are held constant, summing over the

rows will result in aggregated statistics of the persons for

each replicated data set. See Listing 7.

Item-total correlation coefficient
Again, vectorization speeds up the calculation. Further-

more, computation is more efficient when using the apply
function instead of for loops. Thus, first the person to-

tal score is calculated, then correlated with each items re-

sponses. This results in a matrix of which the diagonal

holds the correlation of the respective iteration of the repli-

cated data sets. See Listing 8.

Observed Score Distribution
The observed score distribution is actually nothing more

than the total score distribution. Thus, the procedure is

similar to that used in the ITC computation (see Listing 9).

Yen’sQ statistics
For Yen’sQ1 andQ3, the probabilities of a correct solution

to the responses have to be computed. Furthermore, both

statistics need auxiliary variables that, for example, con-

tain the expected values per group for Q1. To keep things

concise, only the final estimation functions for the statis-

tics are given below. How to initialize the auxiliary vari-

ables and the function for calculating the solution proba-

bility can be taken from the online supplement.

Yen’sQ1

Other than the discrepancy measures used so far, Yen’sQ1

cannot be computed from the replicated data alone. The

expected values are calculated from the posterior means

of the estimated parameters extracted from the stan�t ob-
ject. The groups are formed by assigning indexes in rank

order of the latent ability, as seen in Listing 10.

Yen’sQ3 of item pairs

Like Yen’s Q1, Q3 has need of auxiliary variables calcu-

lated from the posterior means of the parameter estimates.

Again, the expected values are computed as solution proba-

bilities. First, the differences in observed and expected val-

ues are calculated and then correlated for each item pair.

See Listing 11.

Real Data Example
Sample
This study used data from mathematical competence tests

administered to a sample of the National Educational Panel

Study
1
that is representative for German fifth graders in

2010 (Blossfeld & von Maurice, 2011). The analyses are

limited to N = 1, 371 students (43% female) that had no
missing data in grades 5 and 7.

Instruments
Mathematical competence was assessed using a test with

different response formats for the items including dichoto-

mous and polytomous multiple choice items (Schnittjer &

Duchhardt, 2015). The present analyses are limited to the

dichotomous items. Thus, 21 of the 24 items of the grade 5

test and 22 of the 23 items of the grade 7 test were used in

the analyses.

Software and packages
All analyses were performed in Stan (version 2.17.0; Stan

Development Team, 2017) and R (version 3.5.1; R Core

Team, 2018). The R packages rstan (version 2.17.3) and

edstan (version 1.0.6; Stan Development Team, 2018; Furr,

2017) were used as the Stan interface and for convergence

diagnostics of the HMC sampler. The R packages haven

(version 2.0.0) and tidyr (version 0.8.1; Wickham & Miller,

2018; Wickham & Henry, 2018) were used for data read-

in and cleaning. The packages ggplot2 (version 3.0.0) and

scatterpie (version 0.1.2; Wickham, 2016; Yu, 2018) were

used for graphical display of the PPC results, whereas the

package loo (version 2.0.0; Vehtari, Gabry, Yao, & Gelman,

1
The data can be downloaded free of charge via the NEPS homepage (https://www.neps-data.de/). Please note that a data use agreement with the

NEPS research data center is a prerequisite for data access.
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Figure 2 PPP values for items and item pairs. (a) OR – from left to right: Rasch, 2PL, and 3PL model. Upper triangle: first

time point (tp), lower triangle: second tp; (b) Q3 – from left to right: Rasch, 2PL, and 3PL model. Upper triangle: first tp,

lower triangle: second tp; (c) Q1 – from left to right: Rasch, 2PL, and 3PL model; (d) Q1 – from left to right: Rasch, 2PL,

and 3PL model.

(a)

(b)

(c)

(d)
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Table 2 Potential scale reduction factor R̂ for the longitudinal Rasch model.

Grade 5 Grade 7

Item number β β µ SD ρ
1 1.00 1.00 1.01 1.14 1.13

2 1.01 1.00

3 1.00 1.01

4 1.00 1.00

5 1.00 1.00

6 1.00 1.00

7 1.00 1.00

8 1.00 1.00

9 1.00 1.00

10 1.00 1.00

11 1.00 1.00

12 1.00 1.00

13 1.00 1.01

14 1.00 1.00

15 1.00 1.00

16 1.01 1.00

17 1.00 1.00

18 1.00 1.00

19 1.01 1.02

20 1.00 1.00

21 1.00 1.00

22 1.00

Note. β item difficulty; µ mean of the latent ability; SD standard deviation of the latent ability; ρ correlation of the
latent abilities

2018) was used for WAIC evaluation.

Statistical Analyses
The longitudinal versions of the Rasch model (Eq. 1), the

2PL model (Eq. 2) and the 3PL model (Eq. 8) were ap-

plied to the data. All code for data preparation and cal-

culating and processing the discrepancy measures is given

in the online supplement. The Stan code for all models

described in this article can also be found in the online

supplement. All models were invoked with 3000 itera-

tions, 2000 warmup iterations and thinning of four for two

chains, resulting in 500 posterior draws.

The discrepancymeasures described in this paperwere

computed for the original and replicated data sets. PPP val-

ues are obtained as the proportion of replicated measures

more extreme (e.g., larger) than the original measure, that

is, they can be computed as means of the binary evalua-

tion of the extremeness of the measure. Graphical display

gives a comprehensive overview of the models in view of

the large number of PPP values.

Results
Model fit

Convergence checks Convergence diagnostics results

were mixed for the different models. The longitudinal

Rasch model converged well as indicated by graphical

checks of the traceplots and the potential scale reduction

factor R̂ (values less than 1.1 indicate convergence, Table
2). The longitudinal 2PL and 3PL model did similarly well,

only the cross-loadings had trouble converging (Table 3,

4). For all models, the ability hyperparameters have slight

troubles converging.

Evaluation using PPC All estimated models were evalu-
ated using odds ratio, Yen’s Q1, Yen’s Q3, the item-total

correlation and the observed score distribution as discrep-

ancy measures. For the item-based measures, PPP val-

ues were calculated and plotted (see Figure 2). For the

OSD, a subset of ten randomly drawn subject’s distribu-

tions were inspected graphically (one of which is shown

for each model in Figure 3). The replicated observed score

distributions did not show any systematic deviations. Next

to graphical analysis, the item-based measures were eval-
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Table 3 Potential scale reduction factor R̂ for the longitudinal 2PL model.

Grade 5 Grade 7

Item number α β α β α µ SD ρ
1 1.01 1.00 1.01 1.01 1.12 1.00 1.03 1.27

2 1.00 1.00 1.03 1.03 1.06

3 1.00 1.00 1.03 1.03 1.03

4 1.00 1.00 1.01 1.01 1.08

5 1.00 1.00 1.00 1.00 1.12

6 1.00 1.00 1.03 1.03 1.10

7 1.00 1.00 1.00 1.00 1.08

8 1.00 1.00 1.00 1.00 1.10

9 1.00 1.00 1.04 1.04 1.10

10 1.00 1.00 1.04 1.03 1.13

11 1.00 1.00 1.01 1.02 1.07

12 1.00 1.00 1.02 1.02 1.12

13 1.00 1.00 1.02 1.02 1.17

14 1.00 1.00 1.00 1.00 1.03

15 1.00 1.00 1.01 1.01 1.16

16 1.00 1.00 1.01 1.02 1.13

17 1.00 1.00 1.01 1.02 1.13

18 1.00 1.01 1.00 1.00 1.11

19 1.00 1.00 1.01 1.02 1.08

20 1.00 1.00 1.00 1.01 1.08

21 1.00 1.00 1.01 1.01 1.12

22 1.00 1.00 1.11

Note. β item difficulty; α item discrimination; µmean of the latent ability; SD standard deviation of the latent ability;
ρ correlation of the latent abilities

uated using the rule of thumb for extreme PPP values (Fig-

ure 4).

The evaluation revealed irregularities about several

different aspects in the respective models. The 3PL and

2PL models exhibit striking values on Yen’s Q1, both for

each item and globally (cf. Figure 2). This indicates prob-

lems with the functional form. Both models perform simi-

larly poor when evaluated using the odds ratio, Yen’s Q3

and ITC statistics (cf. Figure 2). The longitudinal Rasch

model, on the other hand, performs well under Yen’s Q1.

The odds ratio do not seem alarmingly biased. Yen’sQ3, on

the other hand, exhibits more extreme values although no

items are flagged by the statistic for any of the models (Fig-

ure 4). The item-total correlation flags the items 9 and 19

(first time point) and 7 (second time point) when the Rasch

model is applied. The items 7 and 9 are repeated items,

thus, the measure might indicate problems with measure-

ment invariance or, also, that some items might benefit

from changed discrimination parameters.

Evaluation using WAIC The model with the smallest
WAIC can be considered the best-fitting model. Table 5

shows theWAIC and respective standard errors for the dif-

ferent models. The WAIC, contrary to PPC, seems to favor

the 2PL model over the 3PL and the Rasch model although

the standard errors overlap and the result is, thus, not con-

clusive.

Model selection

Considering convergence and PPC results, it seems appro-

priate to select the most parsimonious model, the longitu-

dinal Rasch model, although the WAIC favors this model

least. But because the trouble seemed to lie predominantly

with the cross-loadings, a 2PL or 3PL model without or

with constant cross-loadings (i.e., fixed to one as in the

MRMLC) might be a valid solution as well. A brief compar-

ison of the percentage of flagged items, on the other hand

(Figure ??), shows that the 2PL model with constant cross-
loadings could be chosen. This is supported by the WAIC

values (Table 6) although the standard errors overlap here

as well.

Discussion
This paper gave an overview of Bayesian longitudinal IRT,

WAIC and PPC as well as the implementation of IRT and

The Quantitative Methods for Psychology 852

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p075


¦ 2019 Vol. 15 no. 2

Table 4 Potential scale reduction factor R̂ for the longitudinal 3PL model.

Grade 5 Grade 7

Item number α β γ α β γ α µ SD ρ
1 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.01 1.16 1.20

2 1.00 1.00 1.00 1.00 1.00 1.00 1.01

3 1.00 1.00 1.00 1.00 1.00 1.00 1.09

4 1.01 1.00 1.00 1.00 1.00 1.00 1.04

5 1.01 1.00 1.00 1.00 1.00 1.00 1.09

6 1.00 1.00 1.00 1.00 1.00 1.00 1.03

7 1.00 1.00 1.00 1.00 1.00 1.00 1.09

8 1.00 1.00 1.00 1.00 1.00 1.00 1.12

9 1.00 1.00 1.00 1.00 1.00 1.00 1.03

10 1.00 1.00 1.00 1.00 1.00 1.00 1.05

11 1.00 1.00 1.00 1.01 1.01 1.00 1.04

12 1.01 1.01 1.01 1.00 1.00 1.00 1.10

13 1.00 1.00 1.00 1.00 1.00 1.01 1.08

14 1.00 1.00 1.00 1.00 1.01 1.00 1.05

15 1.00 1.00 1.00 1.00 1.01 1.00 1.04

16 1.00 1.00 1.00 1.01 1.01 1.00 1.08

17 1.01 1.00 1.00 1.00 1.01 1.00 1.08

18 1.00 1.00 1.00 1.01 1.00 1.00 1.11

19 1.00 1.00 1.00 1.00 1.00 1.00 1.05

20 1.00 1.00 1.00 1.00 1.00 1.00 1.07

21 1.00 1.00 1.00 1.01 1.01 1.00 1.06

22 1.00 1.00 1.00 1.10

Note. β item difficulty; α item discrimination; γ guessing parameter of items; µ mean of the latent ability; SD stan-
dard deviation of the latent ability; ρ correlation of the latent abilities

Table 5 WAIC and standard error of WAIC per model

Model WAIC SE

Rasch 59667.43 243.89

2PL 59346.42 245.78

3PL 59410.47 242.60

PPC in R and Stan. There are R packages that facilitate the

use of WAIC for Stan models. Thus, the hurdle to use those

techniques has become low.

Many studies have shown that PPC is able to detect

model deviations and estimation problems in IRT. Applied

to a real data example, PPC identified the longitudinal

Rasch model as the most fitting model. This is in line with

competence test construction in the NEPS which aims at

Rasch model conform test forms. The WAIC, on the other

hand, did not deliver clear results, but slightly favored the

2PL model. Because both model diagnostic methods need

additional data output, they are quite memory intensive. If

working memory is a critical bottleneck, it might be neces-

sary to choose one of the methods. Because PPC are more

informative thanWAIC and, thus, can be used for more de-

tailed investigation of the models, they might be preferred

in initial model evaluations.

Assuming model misfit was detected, one of several

steps could be taken: Firstly, the model could be modified

(e.g., by leaving out problematic items or by scoring them

differently if the item-total correlation indicated under- or

over-estimation). Secondly, the model could be changed as

a whole (e.g., by adding a discrimination or guessing pa-

rameter, or by choosing the most parsimonious model of

a range of models) if problems are detected with a larger

number of the items investigated. Thirdly, the model could

be used as it is while reporting the detected problems of

the model.

In real data applications, the HMC sampler could be

started with more chains (e.g., four instead of two) and a
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Figure 3 Observed Score distribution. (a) Rasch model: subject 15; (b) Two parameter logistic model: subject 191; (c)

Three parameter logistic model: subject 129.

(a) (b) (c)

Table 6 WAIC and standard error of WAIC per model

Model WAIC SE

Rasch nc 59663.16 243.88

2PL cc 59482.85 248.08

2PL nc 59361.60 245.65

3PL cc 59455.36 242.66

3PL nc 59417.05 242.72

Note. "cc" means constant cross-loadings, "nc" means no cross-loadings.

larger number of iterations. This would lead to better mea-

surement precision, but aggravate memory problems. It

would also allow larger thinning intervals to counter possi-

ble issues because of autocorrelation in theMarkov chains.

Future research should again broaden the scope. For

example, more than two time points should be modeled.

Also, several different IRT models should be applied (e.g.,

routines for models for ordered data with different max-

imum categories, or different link functions in a longitu-

dinal setting). A mixture of hierarchical and multidimen-

sional modeling could be employed to fully capture the fea-

tures of longitudinal data. Furthermore, the ever-present

problem of missing data in large-scale assessments has not

been addressed in this study. Combinations of IRT estima-

tion and multiple imputation strategies should be investi-

gated. Another subject could be the difference in estima-

tion schemes as most large-scale assessments are currently

using a two-step approach combiningmaximum likelihood

and Bayesian estimation (Sinharay et al., 2009; OECD, 2017)

instead of fully Bayesian approaches.

Regardless of the acceleration of computational speed

and power of personal computers, the limitations still en-

compass the computational costs of this study. While they

are extended by the repetitive nature of testing a larger

variety of competing models, it has to be stressed that

Bayesian computation is expensive and, especially if sam-

ple sizes increase, hours might have to be invested into the

estimation of the model and also into the model evaluation

(e.g., the aggregation of the PPC information). More par-

simonious models, especially with smaller sample sizes,

will take much less time than their more complex counter-

parts. On the other hand, much less information is avail-

able in small sample situations which entails a different set

of challenges.
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Figure 4 Percentage of items with extreme PPP values (<.05 or >.95).

Figure 5 Percentage of items with extreme PPP values (<.05 or >.95). "cc" denotes constant cross-loadings, "nc" no

cross-loadings in the model.
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Appendix follows.

Appendix A: The listing mentionned in the text.
Listing 1: Custom density function for correlation matrices
functions {

real corr_mat_pdf_log(matrix R, real k) {
real log_dens;
log_dens = ((k * (k - 1)) / 2) - 1) * log_determinant(R) + (-((k + 1) / 2)) * sum(

log(diagonal(R)));
return log_dens;
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}}

Listing 2: Input data
data {

int<lower=1> I; // number of persons
int<lower=1> T; // number of time points
int<lower=1> J[T]; // number of items per time point
int<lower=0, upper=1> Y[I, sum(J)]; // binary item response data

}

Listing 3: Parameters to be estimated
parameters {

matrix[I, T] theta; // latent ability
vector<lower=0>[sum(J)+J[2]] alpha; // item discrimination
vector[sum(J)] beta; // item difficulty
vector<lower=0, upper=1>[sum(J)] gamma; // guessing
real mu; // prior mean of latent ability (time point 2)
corr_matrix[T] R; // correlation matrix of latent ability
real<lower=0> SD; // std. deviation of latent ability (time point 2)

}

Listing 4: Transformed parameters for the likelihood function
transformed parameters {

vector[T] mutheta;
vector[T] S;
cov_matrix[T] sigmatheta;
vector[sum(J)] BETA; // item difficulty
vector<lower=0>[sum(J)+sum(J[2:T]))] ALPHA; // item discrimination
vector<lower=0, upper=1>[sum(J)] GAMMA; // guessing

// set hyperparameters for proficiency
mutheta[1] = 0;
mutheta[2] = mu;
S[1] = 1;
S[2] = SD;
sigmatheta = diag_matrix(S) * R * diag_matrix(S);

// average separately estimated item parameters
for (j in 1:J[1]) ALPHA[j] = (alpha[j]+alpha[j+J[1]]) / 2;
ALPHA[(J[1]+1):(sum(J))] = ALPHA[1:J[1]];
ALPHA[(sum(J)+1):(sum(J)+sum(J[2:T]))] = alpha[(sum(J)+1):(sum(J)+sum(J[2:T]))];
for (j in 1:J[1]) BETA[j] = (beta[j]+beta[j+J[1]]) / 2;
BETA[(J[1]+1):sum(J)] = BETA[1:J[1]];
BETA[(sum(J)+1):(sum(J)+sum(J[2:T]))] = beta[(sum(J)+1):(sum(J)+sum(J[2:T]))];
for (j in 1:J[1]) GAMMA[j] = (gamma[j]+gamma[j+J[1]]) / 2;
GAMMA[(J[1]+1):sum(J)] = GAMMA[1:J[1]];
GAMMA[(sum(J)+1):(sum(J)+sum(J[2:T]))] = gamma[(sum(J)+1):(sum(J)+sum(J[2:T]))];}

Listing 5: Prior distributions and likelihood of the model
model {
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// prior distributions on the hyperparameters
mu ~ normal(1, 3);
R ~ corr_mat_pdf(T);
SD ~ normal(1, 3) T[0, ];
// prior distributions on the parameters
for (i in 1:I) {

theta[i, ] ~ multi_normal(mutheta, sigmatheta);
}
beta ~ normal(0, 3);
for (j in 1:(sum(J)+sum(J[2:T])))) alpha[j] ~ normal(1, 1) T[0, ];
gamma ~ beta(12.5, 37.5);
// likelihood of the data
for (j in 1:sum(J)) {

if (j > J[1]) {
Y[, j] ~ bernoulli(GAMMA[j] + (1 - GAMMA[j]) * inv_logit(ALPHA[j+J2] * theta[, 1]

+ ALPHA[j] * theta[, 2] - BETA[j]));
} else {

Y[, j] ~ bernoulli(GAMMA[j] + (1 - GAMMA[j]) * inv_logit(ALPHA[j] * theta[, 1]
- BETA[j]));

}}}

Listing 6: Replicating data for posterior predictive checking
generated quantities {

int y_rep[I, sum(J)];
real log_lik[I, sum(J)];
// replicated data
for (i in 1:I) {

for (j in 1:sum(J)) {
if (j > J[1]) {

y_rep[i, j] = bernoulli_rng(GAMMA[j] + (1 - GAMMA[j]) *
inv_logit(ALPHA[j+J[2]] * theta[i, 1] + ALPHA[j] * theta[i, 2] - BETA[j]));

} else {
y_rep[i, j] = bernoulli_rng(GAMMA[j] + (1 - GAMMA[j]) * inv_logit(ALPHA[j] *
theta[i, 1] - BETA[j]));}}}

// individual log-likelihood
for (i in 1:I) {

for (j in 1:sum(J)) {
if (j > J[1]) {

log_lik[i, j] = bernoulli_lpmf(Y[i, j] | GAMMA[j] + (1 - GAMMA[j]) *
inv_logit(ALPHA[j+J[2]] * theta[i, 1] + ALPHA[j] * theta[i, 2] - BETA[j]));

} else {
log_lik[i, j] = bernoulli_lpmf(Y[i, j] | GAMMA[j] + (1 - GAMMA[j]) *
inv_logit(ALPHA[j] * theta[i, 1] - BETA[j]));

}}}}

Listing 7: Odds ratio calculated in R
# ’ @param y_rep (rep) x (pers) x (item) array; replicated data

# ’ @param n (patterns) x (rep) ; number of persons solving item pairs in pattern xy

# ’ @param J total number of items

# ’ @param or (rep) x (no. item pairs )

create_odds_ratio <- function(y_rep, n, J, or) {
count <- 1
for (j in seq(J)) {
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i <- 1
while (i<j) {

n[1,] <- rowSums(y_rep[, , i] == 1 & y_rep[, , j] == 1)
n[2,] <- rowSums(y_rep[, , i] == 0 & y_rep[, , j] == 0)
n[3,] <- rowSums(y_rep[, , i] == 1 & y_rep[, , j] == 0)
n[4,] <- rowSums(y_rep[, , i] == 0 & y_rep[, , j] == 1)
or[, count] <- (n[1,]*n[2,])/(n[3,]*n[4,])
colnames(or)[count] <- paste0(’ItemPair’, i, ’_’, j)
count <- count + 1
i <- i + 1}}

return(or)}

Listing 8: Item-total correlation implemented in R
# ’ @param y_rep (rep) x (pers) x (item) array; replicated data

# ’ @param r (rep) x (items) matrix

# ’ @param J total number of items

create_r <- function(y_rep, J, r) {
x <- apply(y_rep, 1, rowSums) # rows: pers, cols: reps

for (j in seq(J)) {
r[, j] <- diag(apply(y_rep[, , j], 1,

FUN = function(y) {
apply(x, 2, FUN = function(xx) {

cor(y, xx, method = "pearson")
})}))}

return(r)}

Listing 9: Observed score distribution implemented in R
# ’ @param y_rep (rep) x (pers) x (item) array; replicated data

# ’ @param J total number of items

# ’ @param J2 number of items at time point 2

create_osd <- function(y_rep, J, J2){
p <- list()
# for each matrix holds : rows: persons, cols : reps

p[["overall"]] <- apply(y_rep, 1, rowSums)
p[["t1"]] <- apply(y_rep, 1, function(x) rowSums(x[, 1:(J-J2)]))
p[["t2"]] <- apply(y_rep, 1, function(x) rowSums(x[, (J-J2+1):ncol(x)]))
return(p)}

Listing 10: Yen’s Q1 implemented in R
# ’ @param y_rep (rep) x (pers) x (item) array; replicated data

# ’ @param E list of (pers per group) x (items) matrices ; expected values

# ’ @param J number of items

# ’ @param q (rep) x (items) ; initialized to 0

# ’ @param s list of length 10; each list element contains person indexes of the resp. group

create_yens_q1 <- function(y_rep, E, J, q, s) {
# observed values

O <- replicate(length(s), matrix(0, dim(y_rep)[1], J), simplify = FALSE)
for (r in seq(dim(y_rep)[1])) {
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for (i in seq(length(s))) {
O[[i]][r, ] <- colMeans(y_rep[r, s[[i]], ])}}

# Q1

for (i in seq(length(s))) {
for (j in seq(J)) {

q[, j] <- q[, j] + (length(s[[i]]) * (O[[i]][, j] -
E[[i]][j]))^2 / (E[[i]][j] * (1 - E[[i]][j]))}}

return(q)}

Listing 11: Yen’s Q3 implemented in R
# ’ @param y_rep (rep) x (pers) x (item) array; replicated data

# ’ @param d (rep) x (pers) x (dim) array; differences y−p
# ’ @param p (pers) x ( items) matrix; solution probabilities

# ’ @param J number of items

# ’ @param q (rep) x (no. item pairs )

create_yens_q3 <- function(y_rep, d, p, J, q) {
count <-1
for (j in seq(J)) {

i <- 1
while (i<j) {

d[, , 1] <- t(t(y_rep[, , i]) - p[, i])
d[, , 2] <- t(t(y_rep[, , j]) - p[, j])
q[, count] <- apply(d, 1, function(x) cor(x)[1, 2])
colnames(q)[count] <- paste0(’ItemPair’, i, ’_’, j)
count <- count + 1
i <- i + 1}}

return(q)}

Open practices
The Open Material badge was earned because supplementary material(s) are available on the journal’s web site.

Citation
Scharl, A., & Gnambs, T. (2019). Longitudinal item response modeling and posterior predictive checking in R and Stan.

The Quantitative Methods for Psychology, 15(2), 75–95. doi:10.20982/tqmp.15.2.p075

Copyright © 2019, Scharl and Gnambs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Received: 23/05/2019∼ Accepted: 18/03/2019

The Quantitative Methods for Psychology 952

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p075
https://osf.io/tvyxz/wiki/
http://www.tqmp.org/RegularArticles/vol15-2/p075/p075.zip
https://dx.doi.org/10.20982/tqmp.15.2.p075

