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As a student presented with the concept of link functions I was always left wanting a bit more. The standard
way a social science student usually learns about link functions is through the introduction of logistic regression.
In this note, I will attempt to provide an earlier version of myself what I always wanted - a step-by-step break
down of how the logit link function is derived.

Of note, we’ll be dealing with link functions in specific scenarios. First, we’ll be dealing with the canonical
link function, only. For instance, the logit is the cannonical link to the binomial whereas the probit is not.
Roughly speaking, this means that the logit link can be directly derived from the binomial whereas the probit
link cannot. Ironically, early on, probit regression was more widely used than logistic regression.

We’ll be using a lot of algebra - there will be a hint of calculus. If this isn’t your cup of tea, perhaps just try
to read the step. But, I try to explain all the steps below in a way that I hope is clear, including the “rules”
I’m using through each step - so give it a shot! Usually mathematical derivations skip steps which makes
them actually look less daunting. I tried to show every single step to make it obvious. I think a little effort
doing algebra can serve most of us students in social science more than we realize.

Preliminaries:
I’ll refer to these rules in the post below.

1. When I use log I mean the natural log, or ln . This is the logarithm with base e such that loge(1) = 0
because e0 = 1 .

2. log(a) + log(b) = log(a ∗ b) .
3. log(a)− log(b) = log( a

b ) .
4. log(a)x = xlog(a) .

Exponential Family of Probability Functions
A generalized linear model’s link function takes the “structural” or linear component of the model and links
it to the outcome, the expectation of y given x (sometimes, this is written, y-hat) but you can also think of it
as µ. To expand, even when you have a standard linear regression of the form,

yi = α+ β1X1i + εi

y has some conditional distribution, an error distribution. In other words, we need to have some way to go
from the structural portion of the model,

α+ β1X1

, which is just a straight line, and link it to its outcome y and have some probability density function for
describing or modeling the data, since we are not working with deterministic data, afterall. In this case, we
have an ε term that “adds” noise and we assume that it’s normally distibuted for each value of X. So Y, for a
given value of x, is modeled with a normal distribution. In other words,

Y = N(µ = α+B1 ∗X1, σ
2)
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or in matrix notation:

Y = N(µ = XB,σ2I)

where I is the identity matrix.

In this case, the Gaussian/normal, the link function is the idenity - or, said another way, the identify link
takes E[Y |X] and outputs the same thing - it doesn’t change it - g(E[Y |X]) = E[Y |X].

When the outcome can only take a value of 1 or 0, the normal distribution is not a grear distribution to use,
really - it best models data that are continuous (among many other properties). So, the identity link won’t
do. We need to see if we can use some other function to transform the expectation such that we can still use
a linear model to model the data.

Welcome to link functions for the generalized linear model.

Family of Exponential Distributions
This is where the bulk of the hard work will be. It turns out that probability density functions (pdf) like
the normal distribution or discrete probability distributions (probability mass functions, or, pmf) like the
binomial are of a family of distributions called the exponential family of distributions. In the case of the
binomial, it is in the exponential family only when there are a fixed number of trials.

What’s special about this is that members of this family can be written in the general form,

fX(x|θ) = h(x)exp[η(θ) ∗ T (x)−A(θ)] (A)

For whatever reason, I like an equivalent form of this distribution a bit better:

f(x, θ, φ) = exp

[
yθ − b(θ)
a(φ) + c(y, φ)

]
(B)

Here, y is your outcome (or number of successes in the case of a binomial), θ is a parameter, b(θ) is a function
of θ, a(φ) is a function of parameter φ, and c() is a function or some set of functions of data and φ.

The logit link and logistic regression
The binomial distribution looks like:

f(y) =
(
n

y

)
py(1− p)n−y (C)

This looks nothing like equation B. Remember from equation A, above, that a GLM gives us the expectation
of y given x. In linear regression, the expectation of y given an x value is simply, ŷ = α+B1X1

We now have a dichotomous outcome which simply can’t be normally distributed given each value of X (aka,
it can’t have normally distributed errors). This will make more sense if we can link the structural portion of
the model to the parameter of the binomial, which is, in the case of 1 trial, simply a bernoulli distribution
with expecation, p, or, generally, with n trials, n ∗ p where p is the probability of success for a trial. In this
way, we’re saying our outcome is the result of bernoulli trials. Regardless, we have to transform to find the
link function.
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Transforming the Binomial into Exponential Form
Steps 1-4

1. The first step is taking the log of both sides of equation C, because, from preliminary point 2, this
will take the multiplication and turn it into addition which we need to do to get closer to B.

2. Using prelimiary point 4, we factor and rearrange, and place the exponents in front of the log fuctions
(for multiplication).

3. To get rid of the log on the left side, we exponentiate with e both sides (using exp(a) to mean ea).
4. Re-write so f(y) back to normal. Proceed to step 5. The algebra is below.

log(f(y)) = log

[(
n

y

)]
+ log(p)y + log(1− p)n−y (1)

log(f(y)) = log

[(
n

y

)]
+ ylog(p) + (n− y)log(1− p). (2)

exp(log(f(y))) = exp

[
log

((
n

y

))
+ ylog(p) + (n− y)log(1− p)

]
(3)

f(y) = exp

[
log(

(
n

y

)
) + ylog(p) + (n− y)log(1− p)

]
(4)

Steps 5 - 7

To save on typing, we’ll only write the term inside the exp[ ] term now.

5. We’ll expand out (n− y)(log(1− p)) in step 5.

6. Rewrite with step 5 expansion inserted back in. To make things simpler, we’ll group our outcome, y,
our parameter of interest p, and terms with the full data in it (n).

7. From preliminary 3, since first two terms have the same log base and multiplicative constant we can

regroup such that ylog(p)− ylog(1− p) becomes y
[
log( p

1−p )
]
.

nlog(1− p)− ylog(1− p) (5)

= ylog(p)− ylog(1− p) + nlog(1− p) + log

((
n

y

))
(6)

= y

[
log( p

1− p )
]

+ nlog(1− p) + log

(
n

y

)
(7)
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Steps 8 - 10
This is starting to look just like we want, and if you’ve used logistic regression, there should be some familiar
terms.

Remember that our exponential form from equation B:

f(x, θ, φ) = exp

[
yθ − b(θ)
a(φ) + c(y, φ)

]
(B)

It appears the yθ portion matches up with:

y

[
log( p

1−p )
]

θ =
[
log( p

1− p )
]

(8)

From equation 2, we see that the second term is also a function of theta, so we need to rewrite nlog(1− p) in
terms of θ. So, the easiest way to do this is to solve for θ in terms of p.

Exponentiate both sides of 8 then simply solve for θ by: A. multiplying both sides by 1 − p, expand-
ing/multiplying out the left side, adding exp(θ) ∗ p to both sides

B. factoring out p, the common term from the right side,

C. Divide both sides by (1 + exp(θ))

1− p = 1
1 + exp(θ) = (1 + exp(θ))−1

exp(θ) = p

1− p (9a)

exp(θ)(1− p) = p (1)
exp(θ)− exp(θ) ∗ (p) = p (2)
exp(θ) = p+ exp(θ) ∗ p (3)

Factor:

exp(θ) = p(1 + exp(θ)) (9b)

exp(θ)
1 + exp(θ) = p (9c)

1 = 1 + exp(θ)
1 + exp(θ) (4)

1− p = 1
1 + exp(θ) (9d)
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After that fair amount of algebra, let’s rewrite
1− p

as
(1 + exp(θ))−1

because a negative exponent denotes a fraction. This step is really important because of prelimiary 4.
Thus, inputting nlog(1 + exp(θ))−1 back in -

We can rewrite, now:

10a. Input nlog(1 + exp(θ))−1 in place of nlog(1− p).

10b. Input −nlog(1 + exp(θ)) because log(a4) = 4log(a)

f(x, θ, φ) = y(θ) + nlog(1 + exp(θ))−1 + log

(
n

y

)
(10a)

f(x, θ, φ) = y(θ)− nlog(1 + exp(θ)) + log

(
n

y

)
(10b)

Believe it or not, this is now in exponential form, where:

y(θ) = ylog( p

1− p )

b(θ) = nlog(1 + exp(θ))

c(y, φ) = log

(
n

y

)
a(φ) = 1

f(x, θ, φ) = exp([y(θ)− nlog(1 + exp(θ))] + log

(
n

y

)
)

Finding Expectations - a little bit of calculus (optional):
It turns out, that the expectation of a distribution in the exponential form is the first derivative of b(θ) and
the variance is a(φ) times the second derivative of b(θ) 1. µ = b′(θ) 2. σ2 = b′′(θ) ∗ a(φ)

Expectation/mean

= b′(θ) = n

[
log(1 + exp(θ))

]
(5)

= n

[
exp(θ) ∗ 1

1 + exp(θ)

]
(6)

= n

[
exp(θ)

1 + exp(θ)

]
(7)

= n ∗ p = np (8)

This is great news. The first derivative worked out and we found the mean. This is what we need to pass
through the link function, eventually.
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Variance (optional)

Given the definition above, this is how I solved. I use the chain and product rule instead of the quotient
rule. . . sue me.

a(φ)b′′(θ) = 1 ∗ n
[

exp(θ)
1 + exp(θ)

]
(9)

= n

[
exp(θ) ∗ (1 + exp(θ)−1)

]
+

[
exp(θ) ∗ −1 ∗ exp(θ) ∗ (exp(1 + θ)−2)

]
(10)

= n[ exp(θ)
1 + exp(theta) −

exp(2θ)
(exp(1 + θ)2) ] (11)

= n
exp(θ)

1 + exp(θ) (1− exp(θ)) (12)

= npq (13)

If you know the mean of the binomial, you’ll realize this isn’t super important to go through all this work,
but it’s good to see.

Linking µ and θ

So the key aspect of a link function is how we go from µ to θ. That is,

f(µ) = θ

is effectively the link function.

Finding the link function
If you skipped the calculus portion, all we need to know now is µ in terms of θ

µ = n ∗ p = n∗
(

exp(θ)
1 + exp(θ)

)
We need to solve for θ. We’ll start by multiplying both sides of the equation by 1 + exp(θ) and then follow
the same process as step 9 but replace p with n ∗ exp(θ)

µ(1 + exp(θ)) = n ∗ exp(θ) (14)
µ+ (µ ∗ exp(θ)) = n ∗ exp(θ) (15)
µ = n ∗ exp(θ)− µ ∗ exp(θ) (16)

µ = exp(θ)(n− µ) (17)
µ

n− µ
= exp(θ) (18)

log( µ

n− µ
) = θ (19)

And that’s your link function! But note, µ = n ∗ p so we can rewrite it as:

θ = log( n ∗ p
n− (n ∗ p)) )

Which, either factoring out n/n, or by substituting 1 for n as is the case for bernoulli trials like in scenarios
we’re used to with logistic regression:
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θ = log( 1 ∗ p
1− (1 ∗ p)) )

θ = log( p

1− p )

And, now this looks awfully like logistic regression.
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