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A multidimensional Rasch-type item response special cases, including Whitely’s multicomponent
model, the multidimensional random coefficients latent trait model, Andersen’s multidimensional
multinomial logit model, is presented as an extension Rasch model for repeated testing, and Embretson’s
to the Adams & Wilson (1996) random coefficients  multidimensional Rasch model for learning and
multinomial logit model. The model is developed change. Marginal maximum likelihood estimators
in a form that permits generalization to the multi- for the model are derived and the estimation is
dimensional case of a wide class of Rasch models, ~ examined using a simulation study. Implications
including the simple logistic model, Masters’ partial and applications of the model are discussed and an
credit model, Wilson’s ordered partition model, and  example is given. Index terms: EM algorithm,
Fischer’s linear logistic model. Moreover, the model  marginal maximum likelihood, multidimensional IRT
includes several existing multidimensional models as  models, multinomial logit models, Rasch models.

A basic assumption of most item response models is that the items measure one common latent
trait (Hambleton & Murray, 1983; Lord, 1980). This is the unidimensionality assumption. There
are, however, at least two reasons why this assumption can be problematic. First, reszarchers
have argued that the unidimensionality assumption is inappropriate for many standardized tests
that are deliberately constructed from subcomponents that are assumed to measure different traits
(Ansley & Forsyth, 1985). Although it is often argued that item response models are robust to
such violations of unidimensionality, particularly when the traits are highly correlated, this is not
always the case. For example, in computerized adaptive testing, in which examinees are adminis-
tered different combinations of test items, trait estimates may reflect different composites of traits
underlying performance and thus cannot be compared directly (Way, Ansley, & Forsyth, 1988).
Further, when a test contains mutually exclusive subsets of items or when the underlying dimen-
sions are not highly correlated, the use of a unidimensional model can bias parameter estimation,
adaptive item selection, and trait estimation (Folk & Green, 1989).

Second, and perhaps more importantly, the demands of current assessment practice often go
beyond unidimensional summaries of examinee traits or achievement. Modern practice often re-
quires the examination of single performances from multiple perspectives; for example, it may be
useful to code an examinee’s performance not only for its accuracy or correctness but also for the
strategy used in the performance or the conceptual understanding displayed by the performance.

The potential usefulness of multidimensional item response theory (MIRT) models has been
recognized for many years. Recently, there has been considerable work on the development of
MIRT models and, in particular, on the consequences of applying unidimensional models to real or
simulated multidimensional data (e.g., Ackerman, 1992; Andersen, 1985; Camilli, 1992; Embret-
son, 1991; Folk & Green, 1989; Glas, 1992; Kelderman & Rijkes, 1994; Luecht & Miller, 1992;

Applied Psychological Measurement, Vol. 21 No. 1, March 1997, 1-23
(©1997 Sage Publications, Inc. 1

from the SAGE Social Science Collections. All Rights Reserved.



Volume 21 Number 1 March 1997
2  APPLIED PSYCHOLOGICAL MEASUREMENT

Oshima & Miller, 1992; Reckase, 1985; Reckase & McKinley, 1991). Despite this, the application
of MIRT models in practical testing situations has been limited. This has probably been due to the
statistical problems that have been involved in fitting such models and in the difficulty associated
with the interpretation of the parameters of existing MIRT models.

Two problems have not been adequately addressed in the research literature on MIRT models.
First, the research has focused on dichotomously scored items; therefore, most of the existing
models and computer programs cannot be applied to multidimensional polytomously scored items,
such as those that generally arise in performance assessment. Second, the limited flexibility of
existing models and computer programs does not match the complexity of real testing situations,
which may involve complexities such as raters and item sampling.

The purpose of this research was to provide some solutions to these problems. A multidi-
mensional Rasch-type model, called the multidimensional random coefficients multinomial logit
model (MRCMLM), several subclasses of the model, and an estimation algorithm for the MRCMLM
are described. Simulation studies were conducted to examine the accuracy of both item and pop-
ulation parameter estimation and the adequacy of asymptotic standard error estimates. A real
dataset of an educational application of the MRCMLM was also analyzed.

The Unidimensional Random Coefficients Multinomial Logit Model

The MRCMLM is a multidimensional extension of the unidimensional random coefficients multi-
nomial logit model (RCMLM; Adams & Wilson, 1996). A brief explanation of the RCMLM is useful
for understanding the MRCMLM.

The RCMLM and examples of its use have been described in Wilson & Adams (1995) and Wil-
son & Wang (in press). The RCMLM is a generalized Rasch model that integrates many existing
Rasch models, such as the simple logistic model (Rasch 1960), the linear logistic latent trait model
(Fischer, 1973), the rating scale model (Andrich, 1978), the partial credit model (PCM; Masters,
1982), and the ordered partition model (Wilson, 1992). In addition, the RCMLM provides substan-
tial flexibility in allowing the design of customized models for particular test situations.

The RCMLM is also equivalent to, or a modest extension of, some other extended Rasch models
that impose linear structures on the item parameters. These include Linacre’s (1989) FACETS
model, Glas & Verhelst’s (1989) extension to the PCM (Glas, 1989), and Fischer & Pononcy’s
(1994) extended rating scale and PCMs for assessing change.

Assume that n items are indexed i = 1,...,n with each item consisting of K; + 1 response alter-
natives (k =0, 1,...,K;). Use the vector valued random variable, X; = (Xi1, Xi2, ..., Xix;)', where
X\ — { 1 if response to item i is in category k )

ik 0 otherwise ’

to indicate the K; + 1 possible responses to item i.

A response in category 0 is denoted by a vector of 0s. This effectively makes the 0 category a
reference category and is necessary for model identification. The choice of this as the reference
category is arbitrary and does not affect the generality of the model. The X; can be collected into
the single vector X' = (X/,X},...,X) called the response vector (or pattern). Realizations of each
of these random variables are indicated by their lower case equivalents: x, x;, and Xik-

The items are described by a vector &' = (§,&,,...,E,) of p parameters. Linear combinations
of these are used in the response probability model to describe the empirical characteristics of
the response categories of each item These linear combinations are defined by design vectors
ay (i=1,...,nand k= 1,...,K;), each of length p, that can be collected to form a design matrix
A= (aj,aq,... »A1K,, 821, -+ ,22K,,- - - ,A], ). Adopting a very general approach to the definition
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of items, in conjunction with the imposition of a linear model on the item parameters, allows
a general model to be written that includes the wide class of existing Rasch models mentioned
above and allows the development of new types of Rasch models [e.g., the item bundle models of
Wilson & Adams (1995)].

An additional feature of the RCMLM is the introduction of a scoring function that allows
the specification of the score or performance level that is assigned to each possible item re-
sponse. To do this, the notion of a response score by, is introduced that gives the performance
level of an observed response in category k of item i. The by can be collected in a vector as
b' = (by1,b12,. .., b1k, b215 b22, - - bk - - , b1k, (By definition, the score for a response in the 0
category is 0, but other responses may also be scored 0.)

In the majority of Rasch model formulations, there has been a one-to-one match between the
category to which a response belongs and the score that is allocated to the response. In the simple
logistic model, for example, it has been standard practice to use the labels 0 and 1 to indicate both
the categories of performance and the scores. A similar practice has been followed with the rating
scale and PCMs, in which each different possible response is seen as indicating a different level of
performance so that the category indicators 0, 1, 2, and so forth that are used serve both as scores
and labels. The use of b as a scoring function allows a more flexible relationship between the
qualitative aspects of a response and the level of performance that it reflects. Scoring functions
of this type are available in Wilson’s (1992) ordered partition model, Muraki’s (1992) generalized
PCM, and the LOGIMO model of Kelderman & Rijkes (1994).

Letting 6 be the latent variable, the RCMLM item response probability model can be written as

b, 0+a
P(Xy = 1A, b,gl0) = -2 a0+ 2E) )

Y, exp (by0+ajE)
=1

and a response vector probability model as

P(X =x|0) =¥(0,&)exp [x (bO+AE)] , 3)
with
-1
¥ (0,8) = { Y exp [z (b8 + AE)] } , 4)
ZEQ

where Q is the set of all possible response vectors.
The Multidimensional Random Coefficients Multinomial Logit Model

The MRCMLM is an extension of the RCMLM that assumes that a set of D traits underlie the per-
sons’ responses. The D latent traits define a D-dimensional latent space, and the persons’ positions
in the D-dimensional latent space are represented by the vector 8 = (81,0,,...,0p). The scoring
function of response category k in item i now corresponds to a D x 1 column vector rather than a
scalar, as in the RCMLM. A response in category k on Dimensiond(d = 1,...,D) of item i is scored
biwa. The scores across D dimensions can be collected into a column vector by, = (b1, b2, -,
byp)', then be collected into the scoring submatrix for item i, B; = (b;;, bz, ... ,b;p)’, and then col-
lected into a scoring matrix B = (B}, B,...,B})’ for the entire test. If the item parameter vector,
€, and the design matrix, A, are defined as they were in the RCMLM, the probability of a response
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in category k of item i is modeled as

P(Xyz = 1;A,B,E0) = M . )
Y exp (b0 +ajE)
k=1
For a response vector,
F{(x:E[8) ="¥(8,E) exp [x' (BO+AE)] . (6)
with
-1
¥ (0,8) = { Y expZ (B9+A§)]} . ¢
2€Q

The difference between the RCMLM and the MRCMLM is that the trait parameter is a scalar, 9, in
the former, and a D x 1 column vector, 0, in the latter. Likewise, the scoring function of response
k to item i is a scalar, by, in the former, whereas it is a D x 1 column vector, by, in the latter.

An item with four response categories and design matrices,

1 00

A=11 1 0 (8)
RN

and
"1 0 0]

B=|1 1 0 ®
|11 1|

is modeled as follows. Substituting these matrices into Equation 5 gives

P(X|; = 1;A,B,E|8) =exp (8, +£&() /D
P(X12=1A,B,E|0) =exp(0; +02+& +&2) /D

P(X;3=1;A,B,E8) =exp(8; +0,+ 63+, + &+ &) /D, (10)
where
D=1+exp(0,+&)+exp(8 +0,+& +&) +exp(0; +0,+0;+& +& +&) (11)

which is a multidimensional PCM (note that the constraints that would be necessary for the identi-
fication of this model have not been imposed). This example is discussed again below.

As an extension of the unidimensional RCMLM, the MRCMLM inherits all of the flexibility of
the RCMLM. Importantly, this allows the specification of a range of multidimensional models
by imposing linear constraints on the item parameters. For example, multidimensional forms of
models such as the rating scale models and linear logistic text model can all be easily specified.

Estimation of the MRCMLM

Marginal Maximum Likelihood Estimation

The MML approach alleviates the problem of inconsistent estimates, which result from joint
maximum likelihood estimation, by assuming that persons have © vectors that are sampled from
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a population in which the distribution of 8 is given by the multivariate density function g(@;a)
(Bock & Aitkin, 1981). G(8;e) is the corresponding distribution function, and & indicates a vector
of parameters that characterize the distribution. Here, two alternative forms of g are considered—
(1) the multivariate normal N (i, X) where p and X are the population mean and standard deviation,
respectively, and o = (,X); and (2) a step distribution defined on a prespecified set of nodes. For
the step distribution, a fixed vector of Q points, (©41,04,,...,040), was selected for each latent

dimension, and the nodes of each of the r = 1,...,QP cartesian coordinates are defined as
6, = (O14,,00,,---,Opkp) With ky=1,...,0; kp=1,...,0; ... ; kp=1,...,0. (12)
The parameters that characterize the distribution are ©,,0,,... ,OQD and wy,wy,... WD, where

g(0;a) = w, is the density at node r. The grid points are specified a priori and the density values are
estimated. Although formally this model uses a discrete trait distribution on the set of prespecified
nodes, it is probably best viewed as an opportunity to approximate an arbitrary continuous trait
distribution. ‘

To construct the marginal likelihood, Equation 6 (the conditional response vector probability)
is combined with the multivariate density function g(0;a) to obtain the marginal density of the
response pattern x; of person j,

f(x;:8) = / ¥(0,€) exp [x; (BO+AL)] dG(8: ) 13)
(-]
Then the likelihood for a set of N response patterns is

N
AGoX) =] / W(0,E) exp [ (B + AE)] dG(8;0t) . (14)
jzle

It follows that the likelihood equations for the item parameters are

dlogh (£, oX) _ i/wdﬂ (6:€,atlx;)
j=lg a&

3
N
=AY [x;- /Ex(zle)dH @:E,0lx,) | =0, (15)
Jj=1 0
where
E,(2/8) =¥(8,§) Y zexp [z (BO+AE)] (16)
2€Q

is the expected response pattern, and H(8;&,a[x;) is the distribution function of the marginal den-
sity of @ given x;, the density of which is given by

h(8:8,alx)) = AL (17)

f(x:8)

For the population parameters, the likelihood equations depend on the choice of the density func-
tion, g. In the multivariate normal case,

dlogA (§,1,2(X) & [0logg(O;p,X)
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gives

N

E/OdH (O:5,1,5]x;)

/=19
and
dlogA (,w,2X) & [ologg(mE) 0 NE
— =X /——az—dﬂ (8:5,1,Z[x;) =0
gives

N
2/9 1) (6 —n) dH (8;€,p,2|x;) .
/=19

In the step distribution case, the likelihood eqﬁations for the weights can be written as

Aoeh o) _ 5 3 208 0, i) =0
j=lg=1

It can be shown that

| N
—Nz‘lh(eq;&,alxj) forg=1,...,0—1.
=

19)

(20)

@1n

(22)

(23)

For both the normal case (likelihood Equations 15, 19, and 21) and the step distribution case (like-
lihood Equations 15 and 23), Bock & Aitkin’s (1981) formulation of the EM algorithm (Dempster,

Laird, & Rubin, 1977) can be used to estimate the model parameters:

Step 1. Calculate the marginal posterior density of @ given x, at iteration ¢ using

o g sl
e

£(t . . o .
where §( ) and &) are estimates of & and a at iteration 7, respectively.

Step 2. Using the Newton-Raphson method, solve

A’é{xj—/h:z[z |0]dH[6<‘, &) |x,]} 0.

. o (e+1
to produce estimates of «‘;( s

Step 3. In the normal case, produce direct estimates of ﬁ(' *+1) and f.(H'l) using

N A
=le

(24)

(25)

(26)
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and
N .
2= 2/ 0-)] o~ ] ar [0 )| @7

In the step distribution case, produce estimates of w(*+1) using

2

—2 [eq:é(",&')le'] : (28)

C . (0 A o
To produce initial values, §( ) and 69, proceed as follows. Let f;; be the probability of a person
with 8 = 0 responding in category k on item i; then from Equation 2 it follows that

1og<f"‘)=a;k§ for k=1,...,K; . (29)

l

Now if p; is the observed proportion of persons responding in category k on item i, calculate

C,k_log<”'k> for k=1,....K , (30)
Pio

gather the c;; in the vector C = (cyy,c¢y2,. .. ,¢nk,)’, and then solve C = A§ to geté(o) = A~C, where
A~ is a generalized inverse of A.

Although a similar approach can be used to produce initial values for o from estimates of per-
sons’ latent vectors, in the normal case it is just as convenient to begin with the assumption that
ﬁ(o) —0and2 = I, and for the step distribution case use initial weights that are proportional to
the multivariate normal density withp=0and Z =1

In the normal case, both Steps 2 and 3 of the algorithm require an integration over the marginal
posterior; in the step distribution case, the density is discrete and the integral becomes a sum-
mation. In the normal case this integration cannot be obtained in a closed form and must be
approximated. Because of its simplicity and flexibility [again following Bock & Aitkin (1981)], a
quadrature approximation is used. Using the same grid of QP points described for the step distri-
bution, and deriving appropriate weights from the multivariate normal N(p,X), use the following
approximations in Steps 2 and 3:

e oo a0] < S e o sl a0)s]
/ 0dH [e;&(’), & x j] ~ QEDIG,h [e,;é,('), 6| j] , (32)
e r=

and

[ fo=ae] o= [0, |

0

D

~ Qz [er “ﬁ(r+1)] [er ,_'1(1+1)]/h [er;é(t)’ &® ‘ xj] ) (33)

r=1
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Although this approach is both straightforward and flexible, it is computationally expensive be-
cause the range of the summations increases exponentially with the dimensionality of the problem.
In practice, this approach can only reasonably address problems of three or four dimensions. Its
great advantage is that it allows almost total freedom in the choice of the population density, g.
[For the multivariate normal population density, the model can be estimated with the computer
program MATS (Wu, Adams, & Wilson, 1995). For information about this program, contact the
first author. For the step distribution, a more rudimentary program called MRCMLM can be used.
For further information, contact the third author.]

Conditional Maximum Likelihood Estimation

Because the MRCMLM is a Rasch model, it is possible to obtain consistent estimates of & using
conditional maximum likelihood (CML) estimation (Andersen, 1970). For CML estimation, a two-
step procedure like that proposed by Anderson & Madsen (1977) and implemented by Hoijtink
(1995) could be used.

Anderson & Madsen (1977) factored the likelihood (Equation 13) into two components—one
dependent on the item parameters only and a second that depends on both the item and population
parameters [see equation (11.5) in Hoijtink (1995)]. Maximizing the first of these two components
produces CML item parameter estimates. These CML estimates then can be substituted into the sec-
ond component of the likelihood, which can be maximized to produce estimates of the population
parameters. The primary advantage of CML is that it yields consistent item parameter estimates re-
gardless of the correctness of the specification of the population distributions, G (Pfanzagl, 1994).
This is in contrast to the MML approach, which produces biased item parameter estimates if G is
misspecified (Zwinderman, 1991). In CML, the population parameters that are estimated in the
second step are estimates of the parameters of a misspecified population distribution, even though
consistent estimates of the item parameters are obtained.

The primary disadvantage of CML, and the reason it was not used here, is that it can only be
used with Rasch models. If an alternative model, such as Muraki’s (1992) generalized PCM is
posited as the measurement model, then CML estimation is not possible. An additional, albeit
minor, disadvantage is that using CML item parameter estimates in a second step as if they were
the “true” item parameters has an as yet to be investigated influence on the estimation of the
population parameters.

For a nonparametric population distribution, CML is asymptotically efficient (Pfanzagl, 1994).
de Leeuw & Verhelst (1986) showed that CML and MML are asymptotically equivalent. For the
parametric approach (e.g., normal), Pfanzagl (1994) also showed that when using the dichoto-
mous Rasch model, MML is asymptotically efficient but CML will be asymptotically inefficient.
Clearly, the examination of the relative strengths and weaknesses of CML and MML estimation in
applications of the MRCMLM is a fertile area for future research.

Identification of the Multidimensional Model

The model in Equation 13 will not generally be identified unless certain constraints are placed
on the design matrices A and B. In addressing the problem of identification, the goal is to determine
the conditions that must be satisfied by A and B to ensure that if

xT (Bp+ AE) = xT(Bp* + AE") (34)
for every possible response vector x, then p = pu* and & = £*. For the normal case, Volodin &

Adams (1995) showed that the following are necessary and sufficient conditions for the identifi-
cation of Equation 6. These conditions can be shown to hold for the nonparametric case, which is
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also considered here.

Proposition 1. If D is the number of latent dimensions, P is the length of the parameter vector, &,
K;+1 is the number of response categories for item i, and K = ¥}, K;, then Equation 14 can
only be identified if P+ D < K.

Proposition 2. If D is the number of latent dimensions and P is the length of the parameter vector, &,
then Equation 14 can only be identified if rank(A) = P, rank(B) = D, and rank([B+A]) = P+D.

Proposition 3. If D is the number of latent dimensions, P is the length of the parameter vector, §,
K;+1 is the number of response categories for item i, and K = ¥ K;, then Equation 14 can be
identified if and only if rank([B+ A]) = P+ D < K.

Subclasses of the MRCMLM

To assist in the discussion of different types of multidimensional models and tests, the notions
of within- item and between-item multidimensionality are introduced. A test is regarded as multi-
dimensional between items if it consists of several unidimensional subscales. A test is considered
multidimensional within items if each of the items relates to more than one latent dimension.
The distinction between the within-item and between-item multidimensional models is shown in
Figure 1.

Figure la depicts a between-item multidimensional test that consists of nine items measuring
three latent dimensions. Figure 1b depicts a within-item multidimensional test with nine items and
three dimensions. If all of the items in Figure 1 were dichotomous, then the matrices

Figure 1
Multidimensionality at the Item Level
a. Within-Item b. Between-Item
LATENT LATENT
ITEMS DIMENSIONS {TEMS DIMENSIONS
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Multidimensional Between-Item Models

Tests that contain several subscales each measuring related, but supposedly distinct, latent di-
mensions are very commonly encountered in practice. In such tests, each item belongs to only
one particular subscale and there are no items in common across the subscales. In the past, item
response modeling of such tests has proceeded by either applying a unidimensional model to each
of the scales separately or by ignoring the multidimensionality and treating the test as unidimen-
sional. Both of these methods have weaknesses that make them less desirable than undertaking a
joint, multidimensional, calibration.

For example, consider the SAT (Donlon, 1984), which contains verbal and quantitative compo-
nents, but each component is comprised of a distinct set of items. To apply this approach, the SAT
is treated as a unidimensional test and each individual is considered to have a single ability because
the distinction between quantitative and verbal abilities is lost. In practice this assumption is not
particularly harmful to the item parameter estimates if, as is often the case, the two dimensions are
highly correlated; but it clearly is of concern if the underlying dimensions are not strongly related.
Regardless of the magnitude of the correlation, this approach has a theoretical impurity—fitting a
unidimensional model to a test that is multidimensional—that makes it unsatisfactory. Further, the
“invisibility” of the subscales means that it is not possible to examine relationships between the
dimensions.

Under the second approach, which Davey & Hirsch (1991) call the consecutive approach, the
test is analyzed separately for each dimension. This approach is often preferred to joint unidimen-
sional analysis because it recognizes the multidimensionality of the test and allows for separate
measurements on each dimension. Although it is possible to examine the relationships between
the separately measured latent dimensions, such analyses must take the measurement error asso-
ciated with the dimensions into account, particularly when the subscales have a small number of
items. Subscales of at least 20 items are probably desirable before the measurement error can be
ignored safely.

A shortcoming of the consecutive approach is its failure to use all available data. In practice it
is common for the subscales to be measuring distinct, but highly correlated dimensions; if this is
the case, then a joint analysis with an appropriate multidimensional model will lead to improved
estimation of the item parameters and ability predictions. The advantage of a model like the
MRCMLM with data of this type is that (1) it explicitly recognizes the test developer’s intended
structure, (2) it provides direct estimates of the relations between the latent dimensions, and (3) it
draws on the (often strong) relationship between the latent dimensions to produce more accurate
parameter estimates and individual measurements.

In the absence of an accessible and fully operational multidimensional model, the procedures
used in the National Assessment of Educational Progress (NAEP) (see Beaton, 1987) can be used
as an alternative to a model like the MRCMLM. In the NAEP approach, separate unidimensional
item response models are fit to each subscale for the purpose of estimating item parameters only.
In the second stage, these parameters are held fixed and the parameters of the underlying multi-
variate latent space are estimated. In general, the use of a MIRT model such as the MRCMLM is
preferred over the NAEP procedure for the following reasons: (1) a MIRT model is a single rather
than a multistep analysis; (2) it provides better estimates of the item parameters [although some
experience suggests that the gain may be small (Adams, Wilson & Wu, in press)]; and (3) unlike
the NAEP procedure, it can be applied to tests that have within-item multidimensionality.

Multidimensional Within-Item Models

If the set of items in a test measures more than one latent dimension and some of the items
require abilities from more than one dimension, then the test is termed within-item multidimen-
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sional. Three kinds of situations in which within-item multidimensional models can arise are
distinguished. First, there is the situation described above in which item developers create items
that require abilities that correspond to more than one of the subscales of a multiscale test.

The second kind of within-item multidimensionality occurs when a single performance by an
individual (e.g., an essay) is judged on two dimensions, such as theme understanding and writing
ability. Each individual is assigned two results for the items—one for theme understanding and the
other for writing ability. If the assignment of the results on the two dimensions are independent
(conditional on ), then for modeling purposes it can be considered as a single item with as many
outcomes as there are different response patterns to the two ratings, or as two separate items.
Consider the following example in which, for the sake of simplicity only, it is assumed that the
item is dichotomously scored (0 and 1) on both dimensions. Then the possible responses are (0,0),
0,1), (1,0), (1,1) (recall that the first category is omitted because it is a reference category used
for identification). In the notation used here, this can be expressed as one item using the design
and scoring submatrices ’

0 1

Aj=11 0 39)
1 1

and
0 1

Bi=|1 0 40)

1 1

or as two items with the design and scoring submatrices

A=A=1], 41
B =[0 1], 42)
and

B,=[1 0] . (43)

It can be shown that Equations 39-40 and 41-43 will result in the same MRCMLM. In general,
however, the first approach is more flexible because it generalizes to more complicated situations,
such as the third type of within-item multidimensionality.

The third kind of within-item multidimensionality deals with complications such as those in
which some response patterns are not theoretically possible, or in which different achievement
levels require different latent abilities. In the former case, consider an item in which three per-
formance levels are identified and that can be solved using one of two strategies; however, one
performance level is not attainable with a particular choice of strategy. Under these circumstances,
it is not possible to use the second of the above methods because there is dependence between the
two types of item outcomes.

In the latter case (different achievement levels require different latent abilities), consider the
item in Figure 2, which was used by Masters (1982) and Wright & Masters (1982), as an example
of a partial credit item. In applying a unidimensional model to this item, Masters assumed that the
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Figure 2
A Partial Credit Item

‘[9-%3—5 =7

0 No steps taken
1 2903=30

2 30-5=25

3

J25=5

same ability dimension is required for the solution of each step. The necessary design and scoring
submatrices for the MRCMLM are

1 0 0
A,~=[1 10] (44)

1
B,—:l:ZJ . 45)
3

In some contexts, it might be argued that the three steps needed to solve this problem require
different latent abilities. If this is the case, a suitable multidimensional PCM can be derived in the
same way that Masters derived the unidimensional PCM (e.g., Masters, 1988), and it can be fit with
the MRCMLM using the following design and scoring submatrices

1 0 O
A,—:l:l O:I 46)

—
P
—

“47)

iy

Il
| me—|
—_—
_— O
- O O
— )

The Relationship Between the MRCMLM and Some Multidimensional Rasch Models

Multidimensional Rasch models have been previously proposed by a number of authors, in-
cluding Rasch (1961), Whitely (1980), Andersen (1985), and Embretson (1991). Each of these
models can be shown to be a special case of the MRCMLM. Whitely’s multicomponent latent
trait model can be formulated as a MRCMLM for a within-item multidimensional test of the type
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shown in Equations 37 and 38. Andersen’s model for repeated testings [and its extension, the
multidimensional Rasch model for learning and change (Embretson, 1991)] can be formulated as
a between-item multidimensional MRCMLM with A used to impose equality constraints on some
of the item parameters.

The expression of the MRCMLM given in Equation 5 disguises the fact that the MRCMLM can
be used in contexts in which either a compensatory or a noncompensatory item response model
is considered desirable. Although each of the examples provided above are compensatory, the
MRCMLM can also be used in a noncompensatory context; for example, consider Whitely’s (1984)
multicomponent model for independent components. Under this model, the success on a single
item, i, requires success on T independent components (the item is made up of subcomponents and
an individual must succeed on all subcomponents before success on the whole item is recorded),
and the probability of success on the item is given by

T ex r
P(X, = 1;&,9) = H_[M

48
i 1+exp (6, +&;) (48)

where 6, is the ability on the tth component, and &, is a difficulty component for the th component.
If the product in Equation 48 is expanded,

T T
exp (; 0, + ;&,)

P(X, = 1;Eju) = T . 49)
H[l+exp(6,+§,)]

t=1

In this form, the multicomponent model for independent components can be shown to be a special
case of the MRCMLM. Item i with T components is treated as a single item with 27 possible
response categories, and the denominator is the sum over the set of numerators that arises when
the components are modeled as separate items. Wilson & Adams (1995) illustrated a range of
applications of this type for the unidimensional version of the RCMLM.

Simulation Studies

Simulation studies were conducted to investigate the properties of the MRCMLM and the estima-
tion method proposed here. Because the MRCMLM is a general model, it was not possible to vary
all conditions in the simulation study. Thus, two simulation studies were conducted—a nonpara-
metric study (i.e., no distributional assumptions were made) and a parametric study (a normally
distributed population was assumed). The first simulation study focused on the item parameter es-
timates; the second considered the population parameter estimates and the accuracy of asymptotic
estimates of error variance as well as the item parameter estimates.

Method

Design.  In the nonparametric case, six factors were manipulated and two levels of each of
these factors were selected: (1) the number of latent dimensions (two and three), (2) model class
(multidimensional between-item and multidimensional within-item), (3) model type (dichotomous
and partial credit), (4) number of items (10 per dimension and 20 per dimension), (5) sample size
(N =300 and N = 700), and (6) the magnitude of the latent correlation (0.0 and .5). 10 replications
of each of the 64 resulting combinations were run.

For both simulation studies, a normal population model was used for the data generation. Also,
the EM algorithm was terminated when the largest absolute change in any parameter estimate
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became less than .005. There appears to be little guidance in the literature about the appropriate
choice of a stopping rule for the EM algorithm. Given the slow rate of convergence of the EM
algorithm, particularly when it is close to the solution, perhaps a stopping rule that is much smaller
than .005 would be preferable. Experience shows (e.g., Wang, 1994; Wu & Adams, 1993) that
selecting a value less than .005 does not markedly improve the properties of the estimators, nor
does it appear to influence any reasonable substantive interpretations that might be based on the
parameter estimates. This issue does, however, warrant further investigation.

All numerical integrations performed in both simulation studies used a fixed grid of 10 uni-
formly spaced nodes per dimension; that is, @ = 10. This resulted in a grid of 100 points for the
two-dimensional models (2DMs), and 1,000 points for the three-dimensional models (3DMs). For
unidimensional item response models, the appropriate choice of Q has been considered: BILOG’s
(Mislevy & Bock, 1983) default value of Q is 10 for tests of less than 50 items and 20 for tests
of more than 50 items; Wilson & Adams (1993) recommended between 10 and 20 nodes; Wu &
Adams (1993) recommend 8 to 15 nodes; and TESTFACT (Wilson, Wood, & Gibbons, 1991) uses a
default of 10 for a one-dimension model, 5 for two-dimension models, and 3 for three dimensions
or more.

Data generation.  For both simulation studies, data were generated as follows:

Step 1. A set of item parameters was specified and remained fixed for all data generation.

Step 2. A random sample of 8 vectors of appropriate size was drawn from an assumed multivariate
normal population.

Step 3. The known fixed item parameters and the random latent vectors @ were then combined to
calculate the probability of each response category in each item for each simulated examinee.
These probabilities were then compared to a uniform (0,1) random number to allocate responses
to specific categories.

The random number generators used in Steps 2 and 3 were seeded differently for each of the 10

replications within each of the 64 cells of the design.

Results

Item parameter estimation with nonparametric methods.  For each of the 640 replications,
bias statistics (i.e., the parameter estimate minus the generating value) were calculated for all item
parameters. The proportion of those statistics that were significantly biased was computed by using
a z test with a two-tailed .05 significance level. The percentage of item parameters significantly
biased at the .05 level is shown in Table 1, along with the number of replicated parameter estimates
that were computed for each cell (R). The overall percentage was 9.08 for the 2DMs and 11.60 for
the 3DMs. Therefore, the item parameters for the 2DM and the 3DM were marginally biased, with
those for the 3DMs somewhat more biased.

To illustrate the magnitude of bias in each cell of the design, the following two indexes were
used for each of the 64 conditions. If { is the generating value of any parameter in the model, and
ﬁk is its estimate in the kth replication, then for each of the conditions,

10

BIAS(() = %H (c-2) (50)

and

| 10 2 1/2
RMSE(L) = [E 2 (¢-%) ] 5D
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Table 1
Percentage of Item Parameter Estimates Significantly
Biased and Number of Replicated Parameter
Estimates (R) for the Nonparametric Simulation Study

2DMs 3DMs

Factor and Condition Bias R Bias R
Model Class

Between-Item Models 7.44 7,200 9.78 10,800

Within-Item Models 10.72 7,200  13.42 10,800
Model Type

Dichotomous Models 3.89 4,800 8.88 7,200

Partial Credit Models 14.26 9,600 14.32 14,400
Number of Items

10 Per Dimension 7.95 4,800 10.83 7,200

20 Per Dimension 10.21 9,600 12.37 14,400
Sample Size

N =300 7.70 7,200 8.61 10,800

N =700 10.46 7,200 14.59 10,800
Latent Correlation

r=.5 9.07 7,200 9.80 10,800

r=0.0 9.08 7,200  13.40 10,800
Overall 9.08 14,400 11.60 21,600

The bias and root mean square error (RMSE) indexes are shown in Figures 3 and 4 for the 2DM and
3DM. In each figure, the lower pair of lines show the mean absolute bias across all item parameter
estimates and the 10 replications for each of the 64 cells in the design for correlations of 0.0 and
.05. The upper pairs of lines similarly show the RMSEs. In both figures there is evidence that the
RMSEs and biases were larger for the within-item multidimensional models (Figures 3b, 3d, 4b,
and 4d) than for the between-item multidimensional models (Figures 3, 3c, 4a, and 4c). Further,
the discrepancy was larger for the 3DMs (Figure 4) than for the 2DMs (Figure 3).

Although Table 1 indicates that more of the bias values were significant than would be expected
by chance, Figures 3 and 4 show that the magnitude of that bias was small when compared to the
sampling variation in the estimates. Although work still needs to be done on this probable bias, it
is clear that its magnitude is such that it is unlikely to affect substantive interpretations that result
from applications of the MRCMLM.

Parameter estimation with parametric methods.  Table 2 shows the results for the parametric
simulation. The item response model used in this simulation was a two-dimensional between-
item PCM with a latent correlation of .5. Table 2 shows the generating parameters of all item and
population parameters, the mean of their estimates across replications, bias, RMSEs, the means of
the estimated asymptotic standard errors, the sampling variance in the estimation, and the ratio of
the sampling variance to the asymptotic standard error.

For the item parameters, the discrepancies between the generating values and the mean esti-
mated values was small in substantive terms, but large enough to warrant further investigation—
this result was consistent with the findings for the nonparametric case. For the population pa-
rameters, the discrepancies were negligible. The ratios of the asymptotic standard errors to the
sampling errors were close to 1, which suggests that the asymptotic error estimates provided a
good approximation to the sampling variation.

Conclusions

The above results provide support for the feasibility of the MRCMLM and the quadrature ap-
proach to estimation. Wang (1994) reported a more extensive range of simulations that further
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Figure 3
Bias and RMSE for the Item Parameters of Two-Dimensional Dichotomous
Models and PCMs, for Short and Long Tests and N = 300 and N = 700
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Figure 4
Bias and RMSE for the Item Parameters of Three-Dimensional Dichotomous
Models and PCMs, for Short and Long Tests and ¥ = 300 and N = 700

== == = Correlation =0.0 Correlation=0.5
a. Between-Item Dichotomous Models b. Within-Item Dichotomous Models
040 p— 040 p—
5 8
5 036 - LE 036 -
- o
% m R A
]
g 08 ‘g 28 b
1) .1}
= 2 o b
: : \
(4™ 0~
020 s 020 =
: : \
Z 6 b Z 06 | \
a Ay »
& bk \\ 8 m \ \
] ©
3 -
KL I = é ;L X
=
< 0.04 :?: 0.04 \
g i ———_ :7_.‘ g : [~ ——
b 00 ) 1 i 1 = 000 ) 1 | i
300 700 300 700 300 700 300 700
Short Long Short Long
c. Between-ltem PCMs d. Within-Item PCMs
040 —_ 040 -
5 5
E o L \
3 3
5o b E o b
o =
& \
5 028 - (g 028 - s
)] Q)
= o b Z o4 L
3 g
o~
s | ‘g 020 b
[+}] V] \
Z s E Z 06 | :
& i
m 012 - m 012 =
ﬁ N \ ;2
= 3 E
LI = N 35 B - -
: : -
0.04 - | =
§ —= == § "™
E 000 1 ] 1 { 2 000 1 § 1 3
300 700 300 700 300 700 300 700

Short Long Short Long



for the Two-Dimensional Between-Item PCM for the Parametric Simulation Study

R. J. ADAMS, M. WILSON, and W. WANG
MULTIDIMENSIONAL LOGIT MODEL

Table 2
Parameter Recovery and the Ratio of Estimated Standard Errors (SEs) to Sampling Variation

Mean of
Generating ~ Mean of Asymptotic  Sampling
Parameter Values Estimates Bias RMSE SE Variation  Ratio
& —-1.2 —1.24294 —.04294 .06259 .047922 .04554 1.05228
5, 3 .35168 .05168  .10605 .088882 .09261 95974
&3 -6 —.58974 .01026 .05142 .053356 .05039 1.05887
d4 4 44634 .04634  .07947 .063842 .06456 .98888
ds 0.0 .01328 01328 .07144 .066088 .07020 94143
b .6 60117 .00117 .08352 .082147 .08352 .98356
&, .6 63616 .03616 .05136 .039901 03647 1.09409
&g .8 .83584 .03584 .09422 .090169 08714 1.03476
Sy Ni 71432 .01432 08213 .083317 .08087 1.03026
d10 -1.0 —.98646 .01354 .05867 .057201 .05709 1.00195
811 4 .43470 .03470 .07181 .060599 106287 96387
812 -.5 -.51678 —.01678 .07604 .072068 .07416 97179
813 .8 75589 —.04411 .08491 .070541 .07256 97218
d14 0.0 —.00632 —.00632 .05232 1052241 .05194 1.00579
S5 9 90155 .00155 .09582 .095503 .09581 .99680
b6 ) .50859 .00859  .03787 .036482 .03688 .98921
817 .6 62554 .02554  .07106 .069829 .06631 1.05307
d18 v 69061 —.00939 .10715 .093023 .10674 .87149
[18) 0.0 -.00291 —.00291 .04979 .04740 .04970 95371
ug 0.0 —.00139 —.00139 .04822 .04724 .04820 97996
o1 1.0 97735 —.02265 .08629 .09682 .08326 1.16286
28 1.0 99318 —.00682 .08742 .09740 08715 1.11764
(T 5 149050 —.00950 .06262 .05740 .06190 92744

support the major conclusions found here:
1. There may be a small amount of bias in the estimation of item parameters for both the normal
and the nonparametric models. This bias warrants further investigation, but it is small both in

substantive terms and when compared to typical sampling variation.

19

2. When a normal population distribution is assumed, the parameters of that distribution are
well estimated.
3. Asymptotic standard error estimates provide an adequate indication of the sampling variation
in the estimators.

Instrument

Example Application

This example is based on the Structure of the Learning Outcome (SOLO) Taxonomy (Biggs &
Collis, 1982), which is a method of classifying learner responses to test items according to the
structure of the response elements into five levels: prestructural, unistructural, multistructural, re-
lational, and extended abstract. A mathematical problem-solving test containing seven separate
stimuli was used (Wilson, 1992). Each stimulus is accompanied by three open-ended, dichoto-
mously scored, items. The first item assessed the unistructural response element, the second as-
sessed the multistructural response element, and the third the relational response element. Because
of the age of the examinees (grades 4, 6, and 8), the extended abstract response element was not

assessed.
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Analysis

The levels of the SOLO taxonomy were viewed as dimensions, so that the seven bundles of
three items were viewed as three subscales of seven items each. These data were analyzed three
ways, repeating the comparison of Wilson (1988), and extending that comparison by including
the MRCMLM. First, the data were treated as unidimensional and a standard Rasch simple logistic
model was fit to all 21 items. The unidimensional model (UM) required the estimation of 22
parameters—20 item parameters and the population mean and variance. Second, a consecutive
analysis was conducted by fitting a unidimensional Rasch model to each subscale separately. The
consecutive model (CM) had parameters for the mean and variance of each dimension and six item
parameters for each of the three seven-item subscales. One item parameter on each subscale serves
as an identification constraint. Third, a between-item MRCMLM was fit to the data that included 18
item parameters, three means, three variances, and three covariances [the multidimensional model
(MM)].

Under the UM, each individual was regarded as having a single ability, whereas under the CM
and MM each individual was regarded as having three distinct abilities. Under the CM, correlations
between the latent dimensions were obtained by first estimating abilities for individuals on each
dimension [expected a posteriori (EAP) estimates (Bock & Aitkin, 1981) were used] and then
computing product-moment correlations. These estimates were then disattenuated to remove the
bias caused by the presence of substantial measurement error.

Results

The three models were compared in terms of the usefulness of the information they provided.
For the UM and MM joint analyses, they were compared in terms of model-data fit. The log-like li-
hood statistics (G2), often called the likelihood ratio statistic, for the MM and the UM were 5,103.05
and 5,137.15, respectively; Akaike’s information criterion (AIC; Akaike, 1977) for the UM and MM
were 5,184.05 and 5, 183.15, respectively. Thus, the model-data fit of the MM (which estimated
27 parameters) was not a significant improvement over that of the UM (22 parameters) because the
AIC were almost identical and the difference in the G? (7.1 with 5 degrees of freedom) was not
statistically significant. (The CM was not included because it was fit as three independent models
with identifying constraints on the item parameters, so that it was not a submodel of the MMs.)

Table 3 shows the estimated population means and variances and a reliability index for each
of the latent dimensions. The reliability is the ratio of the observed variance in the EAP estimates
to the estimated true variance. The CM and MM produced statistically equivalent estimates of the
three latent means and variances (e.g., the mean was —.29 for the multistructural dimension for the
CM and was —.30 for that same dimension for the MM). Note that the reliabilities of the dimensions
were much higher for the MM. These higher reliabilities follow from the fact that the EAP method
used to estimate abilities in the MM was able to draw on information in all three latent dimensions
to improve on the ability predictions for each of the single dimensions. The UM produced only a
single mean, variance, and reliability. The reliability was slightly higher than that for the separate
subscales in the MM.

Table 4 shows estimates of the correlations between the latent dimensions estimated using the
CM and the MM. For the CM, both the attenuated and disattenuated correlation estimates are re-
ported; however, for the MM, only the direct estimates of the latent correlations are reported. The
very high correlation estimates are consistent with the adequacy of a UM for these data. These
results suggest that, at least for these data, the SOLO levels appeared to measure equivalent dimen-
sions of performance.
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Table 3
Estimated Population Means and Variances and Reliabilities
for Each of the Latent Dimensions

Model Dimension Mean SE Variance SE Reliability

Unidimensional Composite -27 .08 1.04 .14 .78

Consecutive Unistructural .64 .09 94 .20 32
Multistructural -29 .10 1.21 24 .59
Relational -1.08 .09 .59 .16 35

Multidimensional ~ Unistructural .64 .09 .95 21 .73
Multistructural -.30 .10 1.02 25 .76
Relational -1.09 .09 .81 .18 .64

Conclusions

The MRCMLM is a mathematically tractable and flexible multidimensional model that produces
parameter estimates that are readily interpretable. Further work is necessary to assist test construc-
tors and users who have a need for clear guidance and concrete examples concerning the utilities
and limitations of MIRT models. Tools and interpretation strategies also are needed to help in the
interpretation of the parameters in multidimensional models. In the case of the model described
here, some of this guidance is available in Wang (1994) and Wang, Wilson, & Adams (1996).

Table 4
Correlations Between the Latent Dimensions
(UM = Unistructural With Multistructural,
UR = Unistructural With Relational,
MR = Multistructural With Relational)

Model UM UR MR

Consecutive (Attenuated) .70 41 .56

Consecutive (Disattenuated) 1.00 1.00 1.00

Multidimensional .97 .85 91
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