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Preface 
This edited volume gives a new and integrated introduction to item re­
sponse models (predominantly used in measurement applications in psy­
chology, education, and other social science areas) from the viewpoint of 
the statistical theory of generalized linear and nonlinear mixed models. 
Moreover, this new framework aHows the domain of item response mod­
els to be co-ordinated and broadened to emphasize their explanatory uses 
beyond their standard descriptive uses. 

The basic explanatory principle is that item responses can be modeled 
as a function of predictors of various kinds. The predictors can be (a) char­
acteristics of items, of persons, and of combinations of persons and items; 
they can be (b) observed or latent (of either items or persons); and they 
can be (c) latent continuous or latent categorical. Thus, a broad range of 
models can be generated, including a wide range of extant item response 
models as weH as some new ones. Within this range, models with explana­
tory predictors are given special attention, but we also discuss descriptive 
models. Note that the 'item responses' that we are referring to are not 
just the traditional 'test data,' but are broadly conceived as categorical 
data from a repeated observations design. Hence, data from studies with 
repeated-observations experimental designs, or with longitudinal designs, 
mayaIso be modeled. 

The intended audience for this volume is rather broad. First, the volume 
is meant to provide an introduction to item response models, starting from 
regression models, although the introduction is at a quite compact and gen­
eral level. Second, since the approach is so general, many different kinds of 
models are discussed, weH-known models as weH as less weH-known mod­
els, and even previously-unknown models, aH from the same perspective, 
so that those already weH familiar with psychometrics mayaIso find the 
volume of interest to them. Third, the volume also has practical purposes 
for those already practicing in the field: (a) the regression-based framework 
that is presented makes it easier to see how models can be estimated with 
software that was not originaHy designed with item response models in 
mind, and (b) one can formulate and estimate new models, tailor-made to 
the measurement and explanatory purposes one has in mind. In this way, 
we hope to give practitioners a flexible tool for their work. 

We see this volume as being suitable for a semester-Iong course for ad­
vanced graduate students in measurement and psychometrics, as weH as a 
reference for the practicioner. Each chapter is foHowed by a set of exercises 
designed (a) to give the reader a chance to practice some of the computer 
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analyses and (b) to point out some interesting perspectives and extensions 
arising in the chapter. In order to make the task easier for the reader, a uni­
fied approach to notation and model description is followed throughout the 
chapters, and a single data set is used in most examples to make it easier to 
see how the many models are related. The volume includes a chapter that 
describes the principal computer programs used in the analyses, and at the 
end of most chapters one can find command files and enough detail for a 
representative set of analyses, with the intent that the reader can carry 
out all computer analyses shown in this volume. A website associated with 
this volume, has been installed (http://bear . soe . berkeley . edu/EIRM/) 
- it contains all data sets used in the chapters, the command files for all 
analyses, sampIe output, and (sampIe) answers to the exercises. Part I of 
the volume gives an introduction to the framework. In Chapter 1, start­
ing from the linear regression model, two basic ideas are explained: How 
linear models can be generalized using a nonlinear link function, and how 
individual differences can be incorporated, leading to generalized linear and 
nonlinear mixed models (GLMMs and NLMMs). In Chapter 2 we illustrate 
the concepts of descriptive and explanatory measurement using four basic 
item response models: the Rasch model, the latent regression Rasch model, 
the linear logistic test model (LLTM), and the latent regression LLTM. 
Chapter 3 describes the extension to models for polytomous data. The 
general statistical background of the models is explained in more depth in 
Chapter 4. 

In Part II, these models are generalized to other and more complicated 
models that illustrate different ways that models can be explanatory by 
incorporating external factors. In this part, we concentrate on three types 
of predictors: (a) Models with explanatory person predictors, including 
multilevel models with person groups as predictors (Chapter 5); (b) models 
with explanatory item predictors, including multilevel models with item 
groups as predictors (Chapter 6); and (c) models with explanatory person­
by-item predictors, including models for differential item functioning (DIF) 
and so-called dynamic models with responses from one or more other items 
as predictors (Chapter 7). 

In some situations it can make sense to consider models that deal with 
'unknown' predictors or predictors with values that are 'not known a pri­
ori.' These are together called internal factors, because the values of the 
predictors are derived from the data, instead of being given as external in­
formation. This is the basis for Part III. In this part, Chapter 8 and Chapter 
9 deal with models with so-called latent item predictors. In Chapter 8 bi­
linear models with item slopes ('discrimination' parameters) are discussed, 
for example the two-parameter logistic model. Multidimensional models 
are also discussed in this chapter. In Chapter 9 bilinear models where item 
parameters are a function of other item parameters are discussed - the so­
called models with internal restrictions on difficulty (MIRID). In general, 
independent of the model under consideration, some dependence between 
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the item responses may remain. This is the issue of local item dependence. 
In Chapter 10, different ways to model remaining dependence are presented. 
An assumption in all models in the previous chapters is that, if predictor 
weights are random, a normal distribution applies to these weights. This 
assumption is relaxed in Chapter 11 on mixture models. 

The volume closes with a final part where there is a chapter on estimation 
methods and software (Chapter 12). This chapter includes examples of 
how to use a wide variety of computer programs to estimate models in the 
Chapters. 

There are some topics that the reader might have expected to be included 
in this volume that we have not included. For example, in pursuit of our 
theme of explanatory rat her than descriptive item response models, we 
have not explored the topic of the estimation of person parameters, a topic 
that is mainly of interest in descriptive measurement. In a similar vein, we 
have not discussed issues in conditional maximum likelihood estimation, as, 
at present, this seems less useful to explanatory measurement than other 
formulations. Except in passing, we have not considered response formats 
involving response times and counts: We see these as being most promising 
forms of response data for response modeling, but did not include them 
at this point due to (a) the relative rarity of models for such data in the 
item response modeling literature, and (b) our own relative inexperience 
with such data formats. Although we make frequent use of some statistical 
model testing techniques, we do not include an in-depth account of such 
techniques, although a general discussion is given in Chapter 4. 

Paul De Boeck, Leuven, Belgium 
Mark Wilson, Berkeley, California, USA 
December 29, 2003 
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Notation 
Indices 

p for persons, p = 1, ... , P; 
i for items, i = 1, ... ,I; 
k for item predictors, k = 0 or 1, ... , K, 
(or alternatively for fixed-effect predictors); 
j for person predictors, j = 0 or 1, ... ,J, 
(or alternatively for random-effects predictors); 
h for person-by-item predictors, h = 1, ... , H; 
9 for groups, 9 = 1, ... ,G; 
r for latent predictors, r = 1, ... ,R; 
m for categories, m = 1, ... , M, or m = 0, ... , M - 1; 
(including quadrature nodes). 

Data 

Y is used for the data, with Ypi denoting the response of person p to item i. 

Predictors 

X for item predictors (Xik), 
(or alternatively for predictors with fixed effects); 
Z for person predictors (Zpj), 
(or alternatively for predictors with random effects); 
W for person-by-item predictors (Wpih); 
a for latent predictors (air or a pr ). 

Effects (Weights, Coefficients) 

ß for fixed effects of item predictors (ßk), 
() for random effects of item predictors (commonly ()pk), 

{) for fixed effects of person predictors ({) j ) , 

( for random effects of person predictors (commonly (pj), 
15 for fixed effects of person-by-item predictors (15h ), 

'Y for random effects of person-by-item predictors (commonlY'Yph), 
E: for remaining continuous random terms when predictors are used. 

Model 

7rp i for the probability of a Ypi = 1 (binary data), 
7rp im for the prob ability of Ypi = m (multicategorical data), 



xxii Notation 

'TIpi and 'TIpim for the transformed 1fpi and 1fp im, respectively, based on the 
link function. 

Comments 

1. By convention, the 1fS and 'TIS are used without an indication of the 
random variables they are conditioned upon. The conditioning should be 
dear from the context. It is mentioned in an explicit way when the values 
are marginal values. 
2. Most random effects are effects that are random over persons, so that a 
subscript p is used. The same symbol (e.g., (J) is also used when the effects 
are random over items or groups, but the subscripts are adapted (into i 
and g, respectively). 
3. Depending on the chapter, more specific and adapted notation is used. 
As an example, in Chapters 1, 3, and 4, the notation for predictors and 
their indices is somewhat different and more consistent with the statistical 
literature (as in parentheses above). There are other differences that are 
chapter specific. 
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Chapter 1 

A framework for item response 
models 

Paul De Boeck 
Mark Wilson 

1.1 Introduction 

This volume has been written with the view that there are several larger 
perspectives that can be used (a) to throw light on the sometimes confusing 
array of models and data that one can find in the area of item response 
modeling, (b) to explore different contexts of data analysis than the 'test 
data' context to which item response models are traditionally applied, and 
(c) to place these models in a larger statistical framework that will enable 
the reader to use a generalized statistical approach and also to take ad­
vantage of the flexibility of statistical computing packages that are now 
available. 

1.1.1 M easurement or explanation? 

Suppose that we have been asked to analyze some data from a typical 
educational achievement test. We note parenthetically that we could as 
easily have chosen to consider an example from a psychological experiment 
on, say, attitudes, or from a developmental study of some sort of growth 
using categorical observations. We will return to discuss these somewhat 
different contexts in the next section, but for now, we will confine ourselves 
to this 'testing' context, as it is familiar to most people, if only from their 
own educational experiences. 

There are two very general types of scientific questions that might arise 
concerning this type of data. One type of quest ion pertains to how weIl 
the test can serve as providing a 'measure' of the examinees' proficiency on 
the underlying variable that the test is designed to measure ~ commonly 
called the 'latent' variable. Such questions center around the use of the test 
at the level of the individual examinees. We will refer to the approach as 
the measurement approach, as it seeks to describe the performance of the 
individual examinees on the test. 

In contrast, without being interested in the measurement of the individ­
ual examinees, one could also consider a very different type of scientific 
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question, which seeks to relate the item responses on the test to other vari­
ables, which might include variables that pertain to the examinees (person 
predictors), or variables that pertain to the items (item predictors). We 
will refer to item response models that follow this approach as explanatory, 
as the intention is to explain the item responses in terms of other vari­
ables. An interesting example of this occurs when one seeks to investigate 
the relationship between the examinees' performance on the test and their 
previous training. Another would be to consider design variations in the 
items that make up the test, to see if performance on the items depends 
on, say, item features that are related to the cognitive processes that are 
involved. Here, the level of interpretation in these scientific questions is not 
the individual examinee, but rat her the general inferences that can be made 
ab out the relationship of certain variables across the set of examinees. For 
example, one might be interested in testing a psychological theory, without 
any interest in a further use of the measurement of individual examinees. It 
is evident that the two approaches, the descriptive measurement approach 
and the explanatory approach, can be combined. Thus, explanation is seen 
as complementary to measurement. 

1.1.2 Test data, repeated observations data, and 
longitudinal data 

In this volume then, we will be emphasizing the possibilities of explanatory 
uses of item response models, and thus not only the more usual descriptive 
approaches that tend to predominate in practice. In doing so, we also wish 
to emphasize that the item response models we will be exploring can be 
used in a wide range of data analysis contexts. In particular, we will look 
beyond the traditional 'test data' context for item response models, and 
also examine applications that are in the contexts of (a) experiments with 
repeated observations, and (b) longitudinal data. The reason for looking 
beyond 'test data' is that experiments with repeated observations and lon­
gitudinal designs share two important features with test data: More than 
one observation is made for each person, and observations are made for 
more than one person. Note that commonly the term 'repeated measure­
ments' is used, but we will avoid that term here, as we see it as important 
to make a distinction between 'observations' and 'measurements.' 

Consider the first of these additional contexts: experiments with repeated 
observations. Such observations come from an experiment with factors that 
are manipulated within persons. The corresponding situation is called a 
within-subjects design in the psychologicalliterature, because the manipu­
lated factors vary within individuals. These factors are termed the design 
factors of the observations. When the persons are all drawn from one pop­
ulation and undergo the same treatment(s), the design is a single-sample 
design. When they are drawn from different populations, for example, males 
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and females, andjor undergo different treatment(s), the design is a multiple­
sample design. Another term for the latter is the split-plot design (Kirk, 
1995).1 For example (an example that we will expand upon in later sec­
tions), two sets of frustrating situations could be presented to a group of 
participants in an experiment, situations where one would likely feel that 
oneself was to blame for the frustration -'self-to-blame situations'- and sit­
uations where one would likely feel that another person was to blame for 
the frustration -'other-to-blame situations.' These could be followed by, 
say, questions on verbal aggression with a number of response categories. 
In this example, self-to-blame versus other-to-blame is a manipulated factor 
and, hence, a design factor. The experiment has a single-sample design. 

Consider now the second of these additional contexts: These observa­
tions mayaIso come from studies with a longitudinal design - repeated 
observations of the same dependent variable at regular (or irregular) time 
intervals. The time of observation and other variables related to time may 
be considered covariates one wants to relate to the observations. EquaIly, 
person properties may figure in models for longitudinal data. 

Note that one could weIl take either approach described above in an­
alyzing data from these two additional contexts - repeated observations 
data could be treated in a measurement way, de-emphasizing the role of 
design factors or covariates. Equally, data from these two contexts could 
be treated in an explanatory way, given that data on suitable explanatory 
variables were available (design factors or covariates). 

Returning to the test data context, we can now see that the repeated ob­
servations may be responses to the items from a test instrument (thinking 
of this dass broadly as being composed of instruments such as achievement 
and aptitude tests, attitude scales, behavioral inventories, etc.). Since a test 
typicaIly consists of more than one item, test data are repeated observa­
tions. Test data are just a special case, but a prominent one in this volume. 
We have found it refreshing to think of test data as being repeated obser­
vations that have to be explained from properties that co-vary with the 
observations. These properties have been termed design factors and covari­
ates for the contexts of experiments and longitudinal data, respectively, 
but from now on both terms will be used interchangeably, and will also be 
used for test data contexts. 

This broader perspective can make testing less exdusively a matter of 
measuring, but also a way of testing theories. Note that tests with a test 
design (Embretson, 1985) may be considered as experiments with a within­
subjects design, because the design implies that item properties are varied 
within the test, just as design factors are manipulated in an experiment. 

1 Kirk (1995) describes the design as one for different sampIes from the same popula­
tion but with a different treatment. 
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1.1.3 Categorical data 

An important and distinctive feature of the data we will deal with is their 
categorical nature. The simplest case of a categorical variable is a binary 
variable. In many tests there are only two response categories, and in other 
tests there are more but they are recoded into, say, 1 and 0, because one 
is interested only in whether the responses are correct or not, or whether 
the persons agree or disagree with what the item states. This is why mea­
surement models for binary data are the more popular ones. However, in 
other cases, there may be more than two response categories which are not 
recoded into two values. In a similar way, observations in general can be 
made in two or more categories. For more than two categories, the data are 
called polytomous or multicategorical. 

Observation categories can be ordered or unordered. The categories can 
be ordered because of the way they are defined, as in a rating scale for­
mat; or they can be ordered based on a conception from the investigator. 
The corresponding data are ordered-category data. Examples of categories 
that are ordered by definition are categorical degrees of frequency (often, 
sometimes, never), of agreement (strongly agree, agree, disagree, strongly 
disagree), and of intensity (very much, moderately, sIightly). Examples of 
categories that are ordered on the basis of a conception would be response 
alternatives for a muItiple-choice item where these alternatives can be or­
dered on their correctness. Observational categories can also be unordered, 
because nothing in the category definition is ordinal and because one has no 
idea of how the categories relate to some underlying dimension. The differ­
ence between such categories is only nominal and therefore these are called 
nominal categories, and the corresponding data are called nominal-category 
data. For example, in a scenario-based test on emotional inteIIigence four 
responses may be presented for each problem and it may not be clear in ad­
vance which response is the most intelligent one and what the order of the 
other responses is with respect to emotional intelligence. The models and 
appIications in this volume mainly include the first two cases of data being 
categorical: binary data and ordered-category data. However, binary data 
will playamore important role in the introduction, since the models for 
binary data can be extended for other types of categorical data. See Chap­
ter 3 for the extension to multicategorical data, including nominal-category 
data. 

1.1.4 A broader statistical perspective 

The broader statistical perspective that we adopt in this volume is that 
item response models are members of a class of models that is larger than 
their traditional applications to item responses may suggest. It turns out 
that most extant item response models are special cases of what are called 
generalized linear or nonlinear mixed models (GLMMs and NLMMs) (Mc-
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Culloch & Searle, 2001). The GLMM and NLMM perspective has several 
advantages over the standard approach, and is quite simple in its core con­
ceptualization, which is based on the familiar linear regression model, al­
though it is not necessarily simple in how it is applied to a specific situation. 
We see it as being straightforward because the similarities and differences 
between models can be described in terms of the kinds of predictors (e.g., 
item predictors and person predictors) and the kinds of weights (i.e., fixed 
or random) they have in the prediction of the observations. 

Perhaps the most important feature of the broader statistical approach 
is that it facilitates an implementation of the explanatory perspective de­
scribed above. Additional important advantages we see are (a) that the 
approach is a general one and therefore also flexible, and (b) that the ap­
proach connects psychometrics strongly to the field of statistics, so that 
a broader knowledge basis and literature become available. Finally, the 
availability of generalized statistical software makes the implementation of 
new models developed for specific situations much more straight forward 
than it has been in the past, where specific-purpose programs could be 
used only under less general circumstances. Examples of general software 
are the NLMIXED procedure from SAS (SAS Institute, 1999), and WIN­
BUGS (Spiegelhalter, Thomas, Best & Lunn, 2003). See Chapter 12 for an 
overview and discussion. 

GLMMs and NLMMs are an appropriate way to model repeated categor­
ical data, binary data as well as, by extension, ordered-category data and 
nominal-category data. They can give a broader perspective on the model­
ing and analysis of data, from tests, experiments, and longitudinal studies, 
a perspective that go es beyond the common practices in psychology and 
educational measurement. 

1.2 Example data set on verbal aggression 

We will make use of an example data set (Vansteelandt, 2000) throughout 
this volume, in order to give a concrete basis for the models to be presented. 
This data set is available at the website given in the Preface. The data are 
responses of persons to quest ions about verbal aggression (see Table 1.1). 
They can be considered as test data or as experimental data. The instru­
ment is a behavioral questionnaire, or one mayaIso call it a personality 
scale or an attitude scale. All items refer to verbally aggressive reactions 
in a frustrating situation. For example, one item is: "A bus fails to stop for 
me. I would curse." And the possible responses are: "yes," "perhaps," or 
"no." They define a set of three ordered response categories. Because the 
data are responses to items, one may consider the data as being exemplary 
of a broad type arising from a measurement scenario: Types of instruments 
like this include achievement and aptitude tests, attitude scales, person-
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ality scales, etc. On the one hand, a traditional way to analyze data like 
this is, after a numerical coding of the responses (e.g., yes=2, perhaps=l, 
and no=O) , to consider the sum as a measure of a person's tendency to 
react with verbal aggression. On the other hand, because a design is built 
into the items, the data mayaIso be considered data from a psychological 
experiment. The experimental design has four factors (see Table 1.1). 

The first design factor is the Behavior Mode. A differentiation is made 
between two levels: wanting to do, termed Want (Le., wanting to curse, 
wanting to scold, or wanting to shout) and actual doing, termed Do (Le., 
cursing, scolding, or shouting). The reason for the distinction is that we 
don't always do what we might want to do. The discrepancy between the 
act and the action tendency is an indication of behavioral inhibition. We 
expect that for a behavior with a negative connotation, one would be less 
likely to do than to want, precisely because of this inhibition. In principle, 
one can also do something one didn't want to do, but the data show that 
this occurs less often. 

The second design factor is the Situation Type. This factor has two levels: 
situations in which someone else is to bIarne, termed Other-to-blame, and 
situations in which oneself is to bIarne, termed Self-to-blame. The two other­
to-blame situations that were presented are: "A bus fails to stop for me" 
(Bus), and "I miss a train because a clerk gave me faulty information" 
(Train), and the two self-to-blame situations that were presented are: "The 
grocery store closes just as I am about to enter" (Store), and "The operator 
disconnects me when I had used up my last 10 cents for a call" (Call). 
The reason for including this design factor was that we expect people to 
display more verbal aggression when someone else is to bIarne. Note that an 
additional design factor, the specific situations that are asked about (two 
of each - see Table 1.1), is nested within this second factor. 

The third design factor is the Behavior Type, and it has three levels: 
Curse, Scold, and Shout. These three behaviors were chosen because they 
represent two behavioral aspects: the extent to which they ascribe blame 
(Blaming), and the extent to which they express frustration (Expressing): 
cursing and scolding were classified as blaming, and cursing and shout­
ing were classified as expressive (i.e., note that the Dutch word that was 
used for 'shout' in the original instrument is 'het uitschreeuwen,' which is 
primarily expressive). 

Because multiple observations are made for all participants, we have 
repeated observations data. The factors are manipulated within the set of 
items to be responded to by all participants. The item design is a 2 x 2 x 3 
design with two specific situations in each cell, leading to 24 items in total. 
There is also a minimal person design, based on Gender (F and M) and 
on the Trait Anger (TA) score. The design for the persons is not shown in 
Table 1.1. 

All items of the test and the factors of the experiment are presented in 
Table 1.1. The order in the table was not the order of presentation. In fact, 
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the items were presented to the respondents in a random order, mixed with 
other items of a similar type. 

TABLE 1.1. The 24 verbal aggression items categorized according to their design. 

Items 

Behavior Mode: Want 

A bus fails to stop for me. I would want to eurse. 
A bus fails to stop for me. I would want to seold. 
A bus fails to stop for me. I would want to shout. 
I miss a train beeause a clerk gave me faulty information. 

I would want to eurse. 
I miss a train beeause a clerk gave me faulty information. 

I would want to seold. 
I miss a train beeause a clerk gave me faulty information. 

I would want to shout. 
The groeery store closes just as I am about to enter. 

would want to eurse. 
The groeery store closes just as am about to enter. 

would want to seold. 
The groeery store closes just as am about to enter. 

would want to shout. 
The operator diseonneets me when I had used up my last 

10 eents for a eal!. I would want to eurse. 
The operator diseonneets me when I had used up my last 

10 eents for a eal!. I would want to seold. 
The operator diseonneets me when I had used up my last 

10 eents for a eall. I would want to shout. 

Behavior Mode: Do 

A bus fails to stop for me. I would eurse. 
A bus fails to stop for me. I would seold. 
A bus fails to stop for me. I would shout. 
I miss a train beeause a clerk gave me faulty information. 

I would eurse. 
I miss a train beeause a clerk gave me faulty information. 

I would seold. 
I miss a train beeause a clerk gave me faulty information. 

I would shout. 
The groeery store closes just as am about to enter. 

would eurse. 
The groeery store closes just as am about to enter. 

would seold. 
The groeery store closes just as am about to enter. 

would shout. 
The operator diseonneets me when I had used up my last 

10 eents for a eal!. I would eurse. 
The operator diseonnects me when I had used up my last 

10 eents for a eall. I would seold. 
The operator diseonneets me when I had used up my last 

10 eents for a eal!. I would shout. 

Situation type Behavior 

Other-to-blame Curse 
Scold 
Shout 
Curse 

Scold 

Shout 

Self-to-blame Curse 

Scold 

Shout 

Curse 

Scold 

Shout 

Other-to-blame Curse 
Scold 
Shout 
Curse 

Scold 

Shout 

Self-to-blame Curse 

Scold 

Shout 

Curse 

Scold 

Shout 

An extract of the actual data for the 24 items is shown in Table 1.2. 
As noted above, the three categorical responses were coded as 2 (yes) , 
1 (perhaps), and 0 (no). There were 316 respondents in total. The first 
three and the last one are shown in Table 1.2; see the first column for 
their number. Of the respondents 243 were females (F), and 73 were males 
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(M). We also had information about the Trait Anger (TA) score of the 
respondents, as derived from a personality inventory: the State-Trait Anger 
Expression Inventory (STAXI; Spielberger, 1988; Spielberger & Sydeman, 
1994). The mean STAXI score in the example data set is 20.00 and the 
standard deviation is 4.85. 

TABLE 1.2. Part of the verbal aggression data set ('C88' is Curse, 8eoId, 8hout). 

Want Da 

Bus Train Store CaU Bus Train Store CaU 
Person CSS CSS CSS CSS CSS CSS CSS CSS 

001 000 000 001 200 101 100 100 222 
002 000 000 000 000 000 000 100 000 
003 111 101 100 000 011 001 000 100 

316 111 101 001 000 000 000 000 000 

Although the models to be discussed in this volume are models for re­
peated observations categorical data, for didactic purposes, we will consider 
the data as if they were continuous. Later on in this chapter they will be 
treated as categorical, after a dichotomization in order to obtain binary 
data. Later on in the volume, and especially in Chapter 3 on models for 
multicategorical data, the data will be treated in agreement with their true 
nature: as ordered-category data. The reason for treating the data first 
as continuous data is because we want to start from familiar models for 
continuous data to explain some principles of modeling. The reason for di­
chotomizing the data later in the chapter is that we want to introduce the 
models for categorical data in their simplest (binary data) form. 

1.3 The person side of the data 

The data matrix in Table 1.2 has two sides: a person side and an item 
side. When looking at the person side of the data, it can be noted that 
some persons have a higher sum score than others. For example, person 1 
and person 3 have a sum score of 13 and 10, respectively, while person 2 
and person 316 have a sum score of 1 and 6, respectively. The most likely 
general reason why the sum scores differ is that some people tend to be 
more verbally aggressive than others. Therefore, it seems reasonable to use 
the inventory as a measurement tool or test for the propensity to verbal 
aggression, and the sum score derived from the inventory as a measure of 
that propensity. 
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In general, tests are used for the measurement of individual-difference 
variables, and often the sum score or a transformation of the sum score 
is used as the measurement result. The test is a measurement tool, and 
its score is a so-called operational definition of the construct one wants to 
measure. Constructs are also called latent variables or latent traits. In the 
example, the construct is the propensity to verbal aggression. 

Measurement is of interest for several reasons. The first reason we will 
consider is evaluation of the individual. Suppose, in our example, that we 
have experience and evidence that from a score of 25 on, people tend not 
to be able to control their verbal aggression. Someone with a score of 25 or 
higher may then be evaluated as too aggressive, and may therefore be given 
the recommendation to follow a course of training for self-control, and after 
the training a new evaluation could be made. In a similar way, educational 
achievement tests can be used to evaluate whether or not students have 
achieved what might be expected from a curriculum. The evaluation can 
be individual or collective (a class, a school, a district), and again some 
action may be recommended. A second reason is prediction. For example, 
suppose it is possible to predict interpersonal conflicts in a job on the 
basis of the verbal-aggression score. One could apply the test to obtain 
an expectation regarding interpersonal conflicts. In a similar way as an 
evaluation, a prediction can also lead to a recommendation and action. 
A third reason is explanation. If the measurement is made for reasons of 
explanation, one may want to correlate the measure to potential causal 
or consequential variables. For verbal aggression, two such causal factors 
could be Gender and Trait Anger. Perhaps Gender as such does not have 
a causal role, but its effect may stern from associated variables, possibly 
related to the learned roles of males and females in our society. Trait Anger 
is the tendency to feelings of anger, and it may be hypothesized that anger 
is an activating source of verbal aggression. An example of a consequential 
variable would be how much the person is liked by others. An explanation 
may be also the basis for a recommendation or action. 

When we talk of 'explanation' as a possible reason for measurement, then 
this is accomplished with a two-step procedure, with measurement as a first 
step, followed by correlating derived test scores withexternal variables in 
a second step, in order to explain the test scores or to explain the external 
variable(s) from the test scores. Alternatively, a one-step procedure can be 
used, where the external variables are directly incorporated in the model to 
explain the data. The models we will discuss in this chapter are all based on 
a one-step procedure, with a direct modeling of the effect external variables 
have. When we refer to the 'explanatory' approach in this volume, a one­
step procedure is what is meant. 
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1.3.1 Classical test theory 

The traditional way of looking at test scores is through classical test theory 
(CTT, Lord & Novick, 1968). According to this theory, test scores result 
from the combination of a true score and an error term. The ass um pt ion 
is that the score we observe is partly due to an underlying latent variable, 
and partly due to an error term: 

(1.1) 

where Ypu represents the test score of person p (p = 1, ... ,P) on occasion 
u, an index for the occasions on which the person could be tested; 
Bp represents the underlying latent trait for person p; and 
cpu represents the error term for person p on occasion u. 

The error term cpu has an expected value of zero, is normally distributed 
and is unrelated to the true score: E(cpu) = 0, cpu rv N(O, 0";), and PE:o=O. 
As a result, the expected value of Ypu , E(Ypu ), is Bp. That is, in the long­
run, one expects to observe an average score that equals the true score, but 
for particular observations, Ypu is randomly distributed around Bp with 
variance 0";. In the verbal aggression example, it is assumed that there is 
a true propensity for verbal aggression, which is denoted by Bp , and that 
the observed sum score Ypu is a reflection of this true score, except for an 
error term. 

Note that relying on the sum score makes it sound like we are back in 
the single-observation context, but note that Ypu = 'E{Ypiu , which is the 
sum of the item scores Ypiu , i = 1, ... ,Ion the occasion u - i.e., we have 
subsumed the repeated observations into a single score. This move allows 
one to apply all the 'usual suspects' in terms of statistical analysis. But it is 
also somewhat disturbing that the actual responses are not being analyzed 
- one might wonder what was lost in the process of reducing the data from 
a vector of responses for each person (i.e., the set of Ypiu ) to r. single score 
Ypu . 

Note also that the index u is not always used, because in fact there may 
be only one observation made for person p and item i. One can differentiate 
between Ypu and YpU' (u -I- u') only when more than one observation of Yp 
is made. For reasons of simplicity we will from now on omit the index u for 
all observations, but conceptually the index has a necessary role. 

1.3.2 Item analysis 

Within the traditional CTT perspective, item analysis is a notable ex­
ception to the focus on the sum scores Yp. Here the unmodeled Ypi are 
investigated to check whether they are appropriate for a contribution to 
the measurement of the underlying construct. The traditional aspects of 
the results that one looks at are: the degree of difficulty (proportion cor­
rect, proportion of "yes" responses), item-total correlation (the correlation 
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between the item and the sum score), and the coefficient of internal con­
sistency. This last coefficient is an estimation of the reliability of the sum, 
for example, coefficient alpha, which is a lower bound for the reliability. 
Items with a negative correlation with the total score go against the gen­
eral tendency of the test - those with a low correlation add little to the 
test. Such items are not good indicators of the construct and they affect 
the reliability of the test; they therefore are usually eliminated. Also items 
with extreme degrees of difficulty are less informative, and therefore are 
often eliminated. Apart from this quality check, items are commonly not 
of interest, and therefore not directly modeled. 

None of the items in the verbal aggression data have extreme difficulty, 
or a low correlation with the total score. The correlations vary from .31 to 
.60. The internal consistency is rather high (Cronbach's a = .89). There is 
no item with the property that when you eliminate it, you obtain a higher 
coefficient of internal consistency. Therefore, all items may be considered 
as reasonably good indicators of the verbal aggression tendency. 

Whereas for test data the person side often predominates, in an experi­
mental context, individual differences are not of interest as such, but only 
in an indirect way as something to be controlled for (as will be explained in 
the next paragraph), or when one has a hypothesis of individual differences 
in the effect of a manipulated factor. In longitudinal studies one is com­
monly interested in individual differences in the change rate and in other 
aspects of change and development. 

1.4 The other side of the data - the item side 

One can take a totally different view of the data than that described in the 
previous section. This is the view that is most commonly taken for exper­
imental and longitudinal designs. From this other perspective one would 
look at the columns of the data matrix in order to investigate whether 
they relate to covariates of the repeated observations, such as manipulated 
factors in an experimental study, and time and time covariates in a longitu­
dinal study. In our example this would mean that we want to find out what 
the effect is of Want vs Do, of Other-to-blame vs Self-to-blame, and of Be­
havior Type, or the behavioral features (Expressing and Blaming), without 
being much interested in the measurement of individuals. Thus the same 
data can be used for this other purpose, and consequently measurement 
concerns are not so important. 

For test data we will call the covariates or design factors of the repeated 
observations item predictors because they refer to the items of the test. 
!tem predictors either stern from an apriori item design, or they relate 
to an unplanned variation of the items. When the test is intentionally 
constructed on the basis of item properties, these properties and the way 
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they are combined in items might be considered the elements of the 'test 
blueprint.' An example of unplanned variation would be variation based 
on properties derived from a post-hoc content analysis of the items in an 
extant test. 

Table 1.1 shows the design of the example study in terms of apriori item 
properties. This design is the basis for looking at the item side of the data 
matrix in Table 1.2, in order to answer questions regarding the effect of the 
item properties. In the next paragraph, we note three patterns that can be 
observed on the item side of the matrix. 

First, the means for wanting (the first 12 items) versus doing (the last 
12 items) are .77 and .59, respectively. This malms sense because not all 
verbally aggressive tendencies (wanting) will be expressed (doing). Second, 
the mean item scores (over all persons) on the Other-to-blame and Self-ta­
blame subtests (composed of the items 1 to 6 and 13 to 18, and the items 
7 to 12 and 19 to 24, respectively) are .84 and .52, respectively. These 
values make sense too, because when someone else is being the source of 
the frustration, this contributes more to anger feelings than when oneself 
is to blame. 

Third, note that the means of the items for the two blaming behaviors 
(items 1, 2, 4, 5, 7, 8, etc.) versus the non-blaming behavior (items 3, 6, 
9, etc.) are .81 and .41, respectively and the means for the two expressive 
behaviors (items 1, 3, 4, 6, 7, 9, etc) versus the non-expressive behavior 
(items 2, 5, 8, etc.) are .68 and .66, respectively. This means that cursing 
(blaming and expressive) is more common than scolding (blaming), while 
the latter is in turn more common than shouting (expressive). The larger 
mean for blaming is expected because blaming is an action tendency assa­
ciated specifically with frustration and anger. 

What one can learn from 'the other side' of the data matrix nicely com­
plements what one can learn from the person side. The person side yields 
test scores and relations of these scores with other variables, from which 
we can infer possible sources of individual differences. The item side teIls 
us about general effects that are independent of individual differences. For 
example, the quick look at means over sets of items carried out in the 
previous paragraph illustrated that (a) people inhibit their verbally ag­
gressive tendencies to a certain degree, (b) verbal aggression occurs more 
often if others are to blame, and (c) blaming is a more likely response than 
expressing one's frustration, but the combination of both is the most fre­
quent response. Even more could be learned if the interactions between the 
properties were also studied, but this is beyond the scope of what we want 
to explain in this chapter. 

All these effects of item properties give us an idea about the factors 
that play in verbal aggression in general. Therefore, the combination of an 
analysis of the person side with an analysis of the item side can contribute to 
our understanding of the meaning of the test scores. This is an instantiation 
of how explanation is complementary to measurement. 
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1.5 A joint analysis of the two sides 

Following the discussion above, we could carry out two relatively straight­
forward analyses of the data. These are briefly explained in the paragraphs 
below to introduce the reasons why a joint analysis of the two sides (person 
plus item) is preferable. 

First, we can derive scores for each individual on each design factor. 
For example, for the Behavior Mode design factor, we could compute a 
subscore for the want-items and another for the do-items, and then we 
can carry out a two-sample t-test to see if the two subscore means are 
significantly different. This is simplistic because the subscores are in fact 
correlated (i.e., they come from the same individuals), and this correlation 
is not taken into account in the t-test analysis. As a consequence, the faulty 
t-test would be conservative (assuming the correlation is positive). Taking 
into account the correlation of the subscores by applying a paired t-test 
means that one is taking into account systematic individual differences, 
which are the basis for the correlation. Without such individual differences 
and the correlations that follow from these, there would be no need for the 
one-sample t-test. 

Second, we can derive the mean score per item over persons, so that 24 
item means are obtained. These 24 item means can function as the depen­
dent variable in a linear regression with the design factors as the predictors. 
This is also simplistic, since it assurnes that there are no individual differ­
ences in the regression weights: in the slopes and/or the intercept. A better 
way of analyzing would be to allow for these individual differences. 

Hence, a more appropriate way of approaching the data is a combined 
analysis, one that captures the individual differences, while still estimat­
ing and testing the effects of the item properties. If there were no reliable 
individual differences, then the two separate approaches just mentioned 
would be less problematic. However, it is quite plausible that when the 
repeated observations data come from different individuals, individual dif­
ferences will occur. Another way of saying the same is that the data are 
likely to be correlated data. The structure of the data is called a clustered 
structure, with each person forming a cluster of data. All data from the 
same individual share a common source and are therefore considered as 
correlated. If one wants to have a model for the complete data, correlated 
data or repeated observations data with individual differences may not be 
dealt with from just the item side. In a similar way, if there are reliable 
differences between items, and one wants to have a model for the complete 
data, one may not look just at the person side - again both sides need to 
be considered. 

However, for some purposes, one may have a restricted interest in just the 
person side of the data, for example, when sum scores are used to 'measure' 
a construct such as a trait or state of some kind (cognitive, personality). As 
will be explained in Chapter 4, there are also approaches that under certain 
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conditions allow one to isolate the item side of the data matrix, in order 
to estimate and test the effects of item properties. These are the so-called 
marginal models. However, these approaches require either assumptions 
regarding the person side or a basis that prevents the person side from 
interfering with the estimates for the item side. 

1.6 The linear regression perspective 

1.6.1 Individual linear regressions 

In order to develop the linear regression perspective while taking into ac­
count individual differences, let us assurne we carry out a different indi­
vidual regression analysis on each of the 316 persons. We will call this 
the individual regressions approach. As will be explained, this is not the 
best way to proceed, but we are discussing this method for illustrative 
purposes. This method has actually been used, for example, by Sternberg 
(1977, 1980) for the study of intelligence, to find out how much separate 
cognitive processes contribute to a person's response time. Each process 
was represented by an item property and the regression weights of these 
properties per individual were interpreted as the times used by the individ­
uals to execute the different processes. In our example, for each individual 
there are 24 observations on the dependent variable, one for each item. 
The predictors in the regression are the design factors that are manipu­
lated, the same design factors for all individuals: Behavior Type, Behavior 
Mode, and Situation Type. Because Behavior Type has three levels, tech­
nically it requires two predictors, so that in fact there will be four item 
predictors. 

Suppose the predictors are defined as in Figure 1.1. The method of cod­
ing the predictors in Figure 1.1 is called contrast coding. Each predictor 
defines a contrast between the levels of a design factor, so that the sum of 
the weights over the levels is zero (e.g., 1/2, 1/2, -1). The alternatives to 
contrast coding are dummy coding and effect coding. For a discussion of the 
types of coding and an interpretation of the effects, see Cohen and Cohen 
(1983). The contrast co ding we use is one with centering on the mean of 
all observations (of person p, because we follow an individual regressions 
approach). This means that the mean of each of the predictors is zero. This 
is so in our case because the number of observations is equal over the levels 
of a factor. For a discussion of centering, see Raudenbush and Bryk (2002). 
Note that two of the contrast predictors (Blaming and Expressing) are not 
independent. 

For contrast coding with centering on the overall mean, the overall mean 
of the observations is the reference level that is used to define the effects. 
Because this basic level is incorporated in all estimated values of the ob­
servations for all combinations of predictors, one may consider this basic 
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predictor 1 (Xda-want) 

Situation Type 
predictor 2 (Xather-selj) 

Behavior Type 
predictor 3 (Xblame) 

predictor 4 (Xexpress) 
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Do = 1 

Other-to-blame = 1 

Curse, Scold = 1/2 
Curse, Shout = 1/2 

Want =-1 

Self-to-blame =·-1 

Shout = -1 
Scold = -1 

FIGURE 1.1. Co ding scheme for the item response predictors. 

level as the effect that all items share. This is equivalent to saying that 
it is the effect of an additional predictor with a value of 1 for all items. 
We will call this predictor the constant predictor. The coding of all items 
according to their predictors, including the constant predictor, defines the 
design matrix X of items by predictors. Each row of the matrix represents 
an item, each column represents an item predictor (including the constant 
predictor), and each cell contains the value of the corresponding item on 
the corresponding predictor. 

Note that we could have defined one more predictor: namely the specific 
situation (Le., Bus or Train, Store or Call) nested within Situation Type. 
Not using this predictor means that the expected value of the observations 
is the same for the two situations within the same type, and that possible 
differences in the observed values are to be attributed to the error term. 

For each single person p one can use the observations per item, Ypi as 
the dependent variable, so that the regression equation for each person p 
reads as follows: 

Ypi = 
JLpXi canstant 

+ 
ßp da-wantXi da-want 

+ßp ather-seljXi ather-selj 

+ßp blameXi blame 

+ßp express Xi express 

+ 

the overall mean for person p 
plus the effect of 
Do vs Want for person p 
Other-to-blame vs Self-to-blame for person p 
Blaming vs not blaming for person p 
Expressing vs not expressing for person p 
plus 
an error term for person p and item i. 

The Xs are the predictors. Their values are displayed in Figure 1.1, except 
for those of Xcanstant (=1 for all items). The ßs are the weights of the item 
predictors, and when multiplied with the corresponding X-value, they are 
the deviations from the overall mean created by the predictor value. The 
weight of the constant predictor is the overall mean JLp. 

We can write the above expression more compactly if we use an index k 
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for the different predictors above: k = 0 for the constant predictor, k = 1 
for the do-want predictor, etc. The individual regression approach implies 
that a separate regression holds for each person: 

K 

Ypi = L ßpkXik + cpi, 

k=O 

(1.2) 

with Ypi as the observed response variable, functioning as the dependent 
variable; 
k, k = 0, ... , K as an index for the item predictors; 
Xik as the value of predictor k for item i, and X iO = 1 for all values of i -
predictor k = 0 is the constant predictor; 
ßpk as the regression weight of predictor k for predicting the responses of 
person p; 

ßpo is the intercept, ßpo = J.Lp is the mean of the person (because of the 
centered contrast co ding) ; 
cpi as the error term for person p and item i. 
It is assumed that Cpi has an independent normal distribution with mean 
0, and variance CJ;, the same for all persons and items. 

1.6.2 Results of individual regressions 

The linear regressions for all of the individuals were calculated using the 
contrast coding just explained. The results for a few persons are shown in 
Table 1.3. For the first person, the multiple R turns out to be .58, and 
for the second person a multiple R of .42 is obtained. As can be seen, the 
regression weights and the constant seem to differ depending on the person 
(but see furt her for a discussion on this point). 

Figure 1.2 shows the slopes of just one of the factors, Do vs Want, for 
all 316 persons. For each person, the mean of the do-items is shown on the 
right, and the mean for the want-items on the left. The difference is twice 
the regression weight. Figure 1.2 illustrates how this approach results in 
many regression lines, one for each person. As expected, most lines in Figure 
1.2 decrease from left to right, because people tend to do less than they 
want. As noted earlier, there may be exceptions, and examples actually do 
occur in Figure 1.2, but the general trend is a decreasing one. It is difficult 
to tell just from an inspection of the figure whether the individuals differ 
in a reliable way as to their slope. One would like to have a technique that 
gave one guidance as to what constitutes important individual differences, 
and what does not. 

Suppose for the argument, that the major difference between the persons 
is not the discrepancy between Do and Want, but the value of the intercept, 
and that the effects of the four predictors are actually fixed over persons. 
As we will see later, this is not an uncommon assumption. That there are 
individual differences in the intercept is nicely illustrated in Table 1.3, but 
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TABLE 1.3. Regression weights for each person in the sampIe (only a few are 
shown). 

Overall Other-
Mean Do vs vs Self-

Predictor (Constant) Want to-blame Blaming Expressing 

Person 1 .54 -.29 -.21 .25 .42 
Person 2 .04 -.04 .04 .08 .08 
Person 3 .42 .08 .08 .00 .17 
Person 4 .62 -.04 .04 .25 .25 

Person 13 .58 .00 .00 .67 .42 

Person 316 .25 .25 .08 -.08 .08 

Want 00 

FIGURE 1.2. Slopes of Do vs Want for 316 persons. 

the support for the assumption of equal slopes for all individuals is not 
evident from the same table nor from Figure 1.2, as some large individual 
differences appear. However, it is difficult to tell whether the variation 
reflects unreliable variation around a truly fixed slope, or reliable individual 
differences instead. This illustrates the need for an approach that goes 
beyond individual regressions. 
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1.6.3 An alternative: linear mixed models 

There are three related problems with the approach of individual regres­
sions. First, if one wants to derive the mean and the variance of the weights, 
a two-step procedure is required. The initial step is to carry out individual 
regression analyses, and the last step is to calculate the mean and variances 
of the weights. Second, one cannot incorporate simplifying assumptions re­
garding the variation of weights. These assumptions may stern from sub­
stantive theory, and can be used to test such a theory, for example a theory 
on the location of individual differences. The assumptions mayaIso stern 
from statistical theory. For example, the assumption of normal distributions 
often provides a basis for standard statistical tests. Third, the individual 
regressions approach is not based on a joint model for the data, which is 
required if one is interested in joint probabilities of responses, and in assa­
ciations between these responses. As a consequence, not all information in 
the data is used for the estimation. 

The individual regressions as described above are actually only one of 
three alternatives. This first alternative was labeled separate regressions 
by Kreft and de Leeuw (1998). A second strategy that has been used is 
called the total or pooled regression approach by the same authors. This 
is where the data from all of the individuals are pooled together, and a 
single regression equation is estimated for all of the individuals in the data 
matrix. Thus, in our example, for the total regression, there is one regression 
equation and 316 x 24 observations of the dependent variable. Both the 
separate regressions and the total or pooled regression lack the perspective 
that persons may be sampled from a population. 

There is a third regression approach, called the random coejJicients ap­
proach by Kreft and de Leeuw (1998), where the regression weights depend 
on the person, and the persons are considered as sampled from a popu­
lation. This is commonly called a hierarchical or multilevel regression ap­
proach. The modeling occurs at the different levels simultaneously: within 
and between persons. Under these circumstances, the regression weight at 
the individual level is called a random coejJicient or random effect, sam­
pled from the distribution that corresponds to the population the person 
is sampled from. The most common assumption is that the distribution is 
a normal distribution. 

Models with a mixing of fixed effects (that do not vary over persons) 
and random effects (that do vary over persons) are called mixed models. 
When the mixed model is a linear model, it is then called a linear mixed 
model (LMM) (Verbeke & Molenberghs, 2000). The fixed effects are also 
population effects. They apply to the population average and to each in­
dividual separately. However, this feature may not be generalized to the 
category of generalized linear mixed models to be introduced later. This is 
stressed in Chapter 4. A description and discussion of the LMM is given 
in Section 1.6.4 and more extensively in Chapter 4. This model has the 
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advantages of being a combined and simultaneous model for the two sides 
of the data matrix, and of allowing the combination of fixed and random 
effects. Because of this fiexibility, it is the model we prefer to continue with 
at this point. 

Note that one can reason in an analogous way for items as for persons, 
so that also for the items three approaches can be followed: (1) separate 
analyses for each item - i.e., set up a regression analysis for each of the 
24 items separately, with 316 observations for each, and with predictors 
such as Gender and Trait Anger; (2) a total or pooled regression with the 
same two predictors; and (3) a linear mixed model with again the same two 
person predictors. 

In its most general formulation both item predictors and person predic­
tors may be included in a LMM. This is a very interesting line to pursue, 
but we will delay further elaboration until Chapter 2, in the context of 
generalized linear mixed models. 

1.6.4 Formulation of the linear mixed model 

The linear mixed model formulation resembles the formulation for the indi­
viduallinear regression model in Equation 1.2, but now (1) a distinction is 
made between two kinds of predictors: predictors with fixed weights (fixed 
effects) and predictors with (individual-specific) random weights (random 
effects), and (2) a distribution is specified for the individual regression 
weights. Two different symbols are used for the predictors: X for predic­
tors with a fixed effect, and Z for predictors with a random effect, and 
correspondingly two kinds of indices are needed: k for X, and j for Z. 

The general formulation of a linear mixed model in scalar notation is the 
following: 

K J 

Ypi = L ßkXik + L BpjZij + cpi, 

k=O j=O 

with k (k = 0, ... ,K) as an index for predictors with a fixed effect; 
j (j = 0, ... , J) as an index for predictors with a random effect; 
X ik as the value of predictor k for item i (for k = 0, X iO=l for all i); 
Zij as the value of predictor j for item i (for j = 0, ZiO = 1 for all i); 

(1.3) 

ßk as the fixed regression weight of predictor k, an overall intercept for 
k = 0, and predictor-specific effects for k = 1, ... ,K; 
Bpj as the random regression weight of predictor j for person p, a person­
specific intercept for j = 0, and person-specific slopes for j > 0, jointly 
following a multivariate normal distribution (for a further specification, see 
below); 
cpi as the error term for person p and item i (for a furt her specification, 
see below). 
We assurne here and in the following that, for each person, responses on 
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the same set of items are available. This is not a condition for the models 
to apply, but it largely simplifies the notation. 

Regarding the notation and furt her specification, we note the following: 
1. One can split a random effect into two parts: its mean and the de­

viation from that mean. The mean of the effects can be considered as a 
fixed effect, and the deviations from the mean as random effects, so that 
the mean of the random effects (i.e., the deviations) is zero. Also, a fixed 
effect can be considered a random effect with zero variance. Therefore, it 
is a conceptually interesting option to consider the X-set and the Z-set as 
equivalent, unless indicated differently. This is the option we have followed 
for general formulation purposes. 

2. It is assumed that the random effects are each normally distributed: 
()pj '" N(O, aD, and that jointly they follow a multivariate normal distri­
bution (Jp '" N(O, :E), 0 denoting a vector of zeros, and :E denoting the 
J x J covariance matrix of the random effects. The variance of the random 
intercepts is denoted bya5 (since j = 0) or a~ if there are no other random 
effects. The common practice of fixing the mean of the random effects to 
zero is not really a restriction, because, as mentioned above, the mean itself 
can be included as a fixed effect. 

3. It is assumed that the error terms, cpi, each follow a normal distribu­
tion with mean zero, and that jointly per person they follow a multivariate 
normal distribution, €p '" N(O, n), ° denoting a vector of zeros, and n 
denoting a I x I covariance matrix, the same for all persons. It is com­
monly assumed that n is diagonal, and very often also that all diagonal 
values are equal (i.e., an. The assumption that the error terms are not 
correlated from one item to another (i.e., n being diagonal) is called loeal 
item independence. 

4. As we have noted above, it is a convention in the literature on mixed 
models (e.g., Davidian & Giltinan, 1995; McCulloch & Searle, 2001; Ver­
beke & Molenberghs, 2000) to denote predictors with a fixed effect as Xs, 
and predictors with a random effect as Zs. Thus far, X and Z are pre­
sented as item predictors, but, in principle, their value may change with 
the persons as weIl. If the value of the predictors depends on the person, a 
subscript p needs to be added for the Xs and Zs in Equation 1.3. In Equa­
tion 1.3 we have denoted the corresponding effects by ßs and ()s. In the 
statistical literat ure , the random effects are commonly denoted by b, but 
we chose () for reasons of conformity with the notation for item response 
models. The ßs are overall fixed effects, whereas the ()s vary at random over 
persons and therefore have a person subscript. 

The formulation of a linear mixed model in matrix notation is the fol­
lowing: 

(1.4) 

where Y p is an I x 1 vector of observations Ypi ; 

X is an I x K matrix, the design matrix for the fixed effects; 
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ß is a K X 1 vector of fixed regression weights; 
Z is an I x J matrix, the design matrix for random effects; 
Op is a J x 1 vector of random regression weights per person p; 
and ep is an I x 1 vector of error terms. 
We have omitted the subscript p for X and Z, assuming for reasons of sim­
plicity these matrices do not differ from person to person, but as mentioned, 
the mOre general formulation would be one with X p and Zp. 

1.6.5 Application of the linear mixed model 

A linear mixed model was tried out for the verbal aggression data with three 
response categories (0, 1, 2), including all four predictors from Figure 1.1 
and the constant predictor (and making the common assumptions described 
in Section 1.6.4). These five predictors were used both as predictors with 
a fixed effect and as predictors with a random effect (as X and as Z, k = 
0, ... ,4; j = 0, ... ,4). The results are displayed in Table 1.4. 

TABLE 1.4. Results of the linear mixed model (verbal aggression data). 

Correlation of randorn effectsb 

Fixed effect Variancea of 
(Mean effect) randorn effect 2 3 4 

O. Constant .68*** .13*** .45*** .26*** 
1. Doing vs 

Wanting -.09*** .02*** 
2. Other-to-blarne 

vs Self-to-biarne .16*** .02*** 
3. Blarning 

behavior .37*** .Og*** 
4. Expressing 

behavior .20*** .05*** -.20* .57*** 

Note a: The significance of the variance is tested with a Wald test, which is conserva­
tive because the variance has a lower bound of zero. For a discussion of this issue, see 
Chapter 2 and Verbeke and Molenberghs (2000). 
Note b: Only significant correlations are shown. 
*: p<.05, **: p<.Ol; ***: p<.OOl. 

All predictors seem to have a significant effect. The mean is significantly 
different from zero (.68). People want to be mOre verbally aggressive than 
they say they would actually be (-.09). They tend to be more verbally 
aggressive when someone else is to blame (.16), when the behavior one 
considers is of a blaming kind (.37), and when it is of an expressive kind 
(.20). Note that the effects of the orthogonal design factors equal half of 
the differences between the means reported in Section 1.4. The effect of all 
four predictors seems to vary over persons. The largest variance is found 
for the intercept. This variation reflects the overall level of the tendency 
to be verbally aggressive. Furt her , some people show a larger discrepancy 
between doing and wanting than others do (variance of .02), and some 
people are more sensitive than others to other-to-blame situations (variance 
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of .02) and finally, some people tend to blame and express more than others 
(variances of .09 and .05, respectively). 

Some of the random effects are correlated to other random effects. First, 
the general tendency to be verbally aggressive (the random intercept) is 
positively correlated with a verbally aggressive sensitivity to situations 
where others are to be blamed for (.45), and also with the tendency for 
blaming others (.26). Second, being expressive in one's verbal aggression 
is positively correlated with blaming as areaction (.57), and is negatively 
correlated with the verbally aggressive sensitivity to situations others are 
to be blamed for (-.20). In other words, the two behavior styles (blaming 
and expressing one's frustration) are positively correlated, but they are dif­
ferentiated in terms of their other correlates. The blaming style goes with 
the general tendency to be verbally aggressive, but the expressive style does 
not, and is associated instead with a sensitivity far situations where one is 
one's own source of frustration (based on the negative correlation). 

It is remarkable that all effects vary over persons, which implies that 
the data are five-dimensional in terms of individual differences. However, 
remember that the data are ordered-category data with only three cate­
gories, which is far from being continuous data. In a linear mixed model, 
the data are treated as if they were continuous, so that we may not really 
trust the outcome of the analysis (but see Chapter 10 for similar results 
when the data are treated as categorical). This application was only meant 
to be illustrative of a model that, albeit inappropriate for our data, can be 
generalized to deal with categorical data (see Section 1.7). 

1.6.6 Multilevel modeling 

As mentioned above, the structure of the linear mixed model is in fact 
a multilevel structure (see also Chapter 5). The levels refer to levels of 
nested clusters. In the context of the verbal aggression data, the lowest­
level clusters are the pairs of persons and items. For these data, there is 
only one observation per cluster. It is typical of test data that only one 
observation is made for each pair of a person and an item. The second level 
of clustering is the persons. Each person is a cluster, or in other words, 
each person is a grouping of the observations for the various items. In 
other applications, clusters of persons can also occur (i.e., schools, regions; 
see Chapter 5). 

Each level has its own clusters and because these clusters may induce 
variation between observations, each level also has its own sour ces of vari­
ation. Take the example of a linear mixed model far the verbal aggression 
data, with only the intercept as a random effect (Opo) but no random slopes 
(i.e., a} = 0 for j > 0). On the within-person level there are two sour ces 
of variation: the error term, cpi, which is a source of random variation, 
and the effect of the item predictors, ßk, a source of fixed variation, the 
same for all individuals. On the person level the intercept, Opo, is a source 
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of random variation, and when Gender and Trait Anger are included as 
person predictors, then there are also sources of fixed variation at the level 
of the persons. The level above the persons, the population they belong to, 
is not a source of variation. It could be, if the study were to be repeated 
with various groups. In total, there are two sources of random variation 
and two sources of variation due to fixed effects. The sources of random 
variation are the error term and the random intercept, and they each play 
on a different level. The error term cpi represents the unexplained variation 
at the within-person level, whereas the random intercept represents the un­
explained variation at the person level. The two sources of fixed variation 
are the item predictors and the person predictors (each with fixed effects). 

It is typical of multilevel models that different levels are taken into ac­
count, and that the effects can be tied to specific levels. If one wants to 
disentangle the components of variance that correspond to the effects and 
to the different levels, one is required to build a model with a correct speci­
fication of the effects on the different levels, and to estimate the model at all 
levels simultaneously in order to avoid confounding one level with another. 
Linear mixed modeling addresses the issues of multilevel modeling; in fact, 
it is a specific type of multilevel modeling. For the link between multilevel 
modeling and mixed models, see among others Goldstein (2003), Longford 
(1993), Raudenbush and Bryk (2002), and Snijders and Bosker (1999). 

1.6.7 Analysis of variance 

Linear mixed models can be seen as a generalization of a common model 
for the analysis of variance. When the intercept is the only random effect, 
as suggested earlier in the example, the resulting model is the same as one 
that is used in the traditional analysis of variance (ANOVA) procedure for 
repeated observations under the assumption of compound symmetry.2 The 
compound symmetry model is the standard model for repeated observa­
tions ANOVA (Davis, 2002), and is formally designed for observations on 
continuous variables rather than the categorical observations under consid­
eration here. The model has the important assumption of a homogeneous 
covariance structure: equal variances for all items, and equal correlations 
between all items (between all repeated observations). 

This can be understood as follows. The variance per item (repeated ob­
servations) is simply the sum of the random-intercepts variance and the 
error variance, and therefore it is equal for all items (repeated observa­
tions): u; + u~. Since all items (repeated observations) share the random-

2In fact, sphericity rather than compound symmetry is the more general condition 
for the F tests ofthe repeated observations ANOVA model to be valid, but Davis (2002) 
and Wallenstein (1982) conclude that it is hard to imagine that the sphericity condition 
would be met but not the compound symmetry condition, so that in practice the required 
assumption is compound symmetry. 
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intercepts value and have an independent error term with equal variances, 
the correlation is equal for all pairs of items (repeated observations). The 
expected correlation between items i and i' is the ratio of the random­
intercepts variance divided by the sum of this variance and the error vari­
ance: Pii' = (7~/((7~ + (7;), as in the formula of the reliability coefficient. 

Because of the assumptions of equal variance and equal correlation, this 
model is quite restrictive. We will see that the analogue of compound sym­
metry is also used in some of the item response models to be explained 
later, for example in the Rasch model and all other models of Chapter 2. It 
is remarkable that these models, which are often considered as too restric­
tive, are in this respect equivalent with a common practice in the analysis 
of variance. In contrast with its random-intercepts variant, the most gen­
eral formulation of the linear mixed model implies a high flexibility, one 
that can overcome the limitations of the classical repeated observations 
ANOVA model. This is because not just the intercept but also other re­
gression weights can be defined to be random effects, each with their own 
variance and with an unrestricted joint covariance structure. As will be 
discussed, there are also item response models with the same flexibility. 

1.6.8 Two points of view 

Note that an analysis along the lines described above in the description of 
repeated observations ANOVA does not require an estimation of the indi­
vidual intercepts or any interest in the individual differences. For example, 
from an experimental point of view, one is interested in the effects of the 
manipulated factors, and not in the individual differences. The only refer­
ence to individual differences is that the correlation of the items (because 
of repeated observations) is taken into account in the analysis of variance, 
in order to obtain a more appropriate confidence interval and a (often more 
powerful) significance test of the effect. The approach can be used in a way 
that is free of any measurement of individual differences, or, we might say as 
a 'measurement-free' approach, notwithstanding the recognition that these 
differences exist and playa role in testing the significance of the effects. 

The other point of view is where one concentrates precisely on individual 
differences and the measurement of individuals. It is possible to estimate 
the random intercept for each person, for example, in order to relate the 
intercepts to an external variable. When contrast coding with centering 
on the overall mean is used for the predictors, then the estimation of the 
random intercept is analogous to the estimation of the true score in classical 
test theory. In the example, the random intercept is an indicator of the 
overall tendency to react with verbal aggression, something one might be 
interested in measuring for any number of reasons. 

From a measurement point of view, the advantage of combining the mea­
surement of individuals with estimating the effects of the design factors is 
that one is informed about the design factors that affect the variable one 
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is measuring. Knowledge of these effects contributes to the interpretation 
of one's measurements, and may be seen as the basis for internal construct 
validity (Embretson, 1983; Wilson, 2005). From a general research point of 
view, the combination of both is an opportunity to understand the data 
and the phenomena that at play, and to test theories about these phe­
nomena, while integrating the two main paradigms Cronbach (1957) has 
described for research in psychology: the experimental paradigm and the 
correlational paradigm (Wilson & Adams, 1992). 

1.7 Modeling binary data 

Thus far we have treated the example data as though they were continuous. 
However, they are not, since they are in fact ordered-category data. The 
linear mixed model cannot be applied to categorical data, because the linear 
model has a continuous error term that requires continuous outcomes and, 
hence, does not respect the boundaries of a categorical variable. However, it 
is possible to generalize the linear model to one that can handle categorical 
data. In order to illustrate this, we will discuss the case of binary data as 
the simplest type of categorical data. As will be shown in Chapter 3, the 
extension to multiple categories is not very difficult. 

Although a general formulation of the linear mixed model was given ear­
lier in this chapter, we will continue here with the random-intercepts model 
(the one that corresponds to the classical repeated observations ANOVA 
model). The reason for this limitation is not only didactical, but also it will 
turn out that the first item response models we want to discuss (in Chapter 
2) are also random-intercepts models. In the following we will stick for a 
while to the random-intercepts case: 

K 

Ypi = L ßkXik + OpOZiO + Epi· (1.5) 
k=O 

The model in Equation 1.5 has multiple fixed slopes (ßl, ... , ßk, ... , ß K ), 
an overall intercept ßo, and a random deviation from the overall intercept 
(Opo), This model is the starting point to introduce models for categorical 
data, and, in particular, to introduce item response models. 

1.7.1 The linear random-intercepts model as an underlying 
model for binary data 

In this section, we give a heuristic argument that illustrates how to extend 
the LMM to a more general model that deals with categorical data. Readers 
familiar with this argument, which is built upon Lord and Novick's (1968) 
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discussion (see also Thissen and Orlando, 2001) or who wish to proceed to 
the general formulation, may skip to the next section. A similar argument 
is developed in Chapter 3. 

Suppose that the binary data Ypi stemmed from the dichotomization 
of a continuous covert variable, denoted as Vpi . Then we could use the 
model of Equation 1.5 for this Vpi, which after dichotomization yields Ypi ' A 
model for the binary variable Ypi implies that the probability that Ypi = 1, 
denoted by Irpi, can be derived from the distribution of Vpi in some way. 
The reasoning behind a common way to think of Irpi is as follows: 

1. Assuming that Vpi follows Equation 1.5, implies the ass um pt ion that 
Vpi is normally distributed. Let us denote the mean, the expected value of 
Vpi , as 'T]pi' The variance, (T;, is equal for all pairs (p, i). The dichotomization 
is realized by the use of a cut-off value c, defined so that Ypi = 1 if Vpi > C, 

Ypi = 0 otherwise. The prob ability that Ypi = 1, Irpi, is determined as 
Pr(Vpi > c). Figure 1.3a gives a graphical representation of this idea for 
person 1 and item i, where gO denotes a density function. In a similar 
way Figure 1.3b shows the distributions for three pairs (persons 1, 2, and 
3, paired with item i), with dotted lines for the distributions of the two 
added pairs. For (2, i) the distribution is located somewhat more to the left 
('T]2i < 'T]li) and for (3, i), the distribution is located somewhat more to the 
right ('T]li < 'T]3i). One can easily see that the probability of a one increases 
from p = 2 to P = 1 to P = 3, or Ir2i < Irli < Ir3i. 

2. To determine the probability that Ypi = 1, we need to specify values 
for (T; and c. However, the choice of an origin and unit for the continuum 
on which the Vpi vary is without consequences. This me ans that the cut-off 
value and the means are identified only up to a linear transformation. The 
value of Irpi is invariant under linear transformations of the V-scale. There­
fore, we can choose c = 0, and (T; = 1. See Figure 1.3c for an illustration 
of a linear transformation. In fact, only the location has changed (from 
'T]li = 0 to c = 0) but in principle also the widths of the distributions would 
change if we had not started with (Tc = 1 in the top left-hand panel. Thus, 
one interpretation of Ir pi is the probability that the value of 0 is exceeded 
under the normal distribution of Vpi with mean 'T]pi and (T; = 1. 

3. The cut-off value c = 0 corresponds with a value of -'T]pi under the 
standard normal distribution (i.e., (O-'T]pi)/l). This means that under this 
distribution, the cumulative probability of -'T]pi is (1 - Irpi) , so that und er 
the same distribution the cumulative probability of 'T]pi is Irpi. 

It follows from the argument above that the cumulative normal distri­
bution function, also called the standard normal-ogive function, maps 'T]pi 

into Ir pi and that the inverse function maps Ir pi into 'T]pi. As a consequence, 
we can transform Ir pi into 'T]pi in order to obtain the mean of the hypothet­
ical underlying Vpi ' The function for this latter mapping is the probit link 
function, 'T]pi = f pro bit (Ir pi)' It is the inverse of the normal-ogive function 
Irpi = f;;;'~bit('T]pi)' shown in Figure 1.3d. Note that the normal-ogive func-
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FIGURE 1.3. Illustrations of the distribution of Vpi. The four panels are denoted 
by 1.3a, 1.3b, 1.3c (densities) and 1.3d (cumulative). 

tion as used does not imply a normal distribution of the persons, but only 
a normally distributed Vpi (and cpi) for each given pair of a person p and 
item i (Lord & Novick, 1968; Thissen & Orlando, 2001). 

1.7.2 The normal-ogive random-intercepts model for 
binary data 

The previous line of reasoning implies two kinds of variables: the binary 
variable Ypi and the continuous variable Vpi ' For the latter, Equation 1.5 is 
used (substituting Vpi for the continuous Ypi in that equation for the linear 
model): 

K 

Vpi = L ßkXik + BpOZiO + cpi, 
k=O 

and Ypi = 1 if Vpi > 0, Ypi = 0 otherwise. 

(1.6) 

From the dichotomization and the independence of the error terms, it 
follows (a) that Ypi has an independent Bernoulli distribution with mean 
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7rpi and variance 7rpi(1- 7rpi) , and (b) that Equation 1.6 without the error 
term Cpi is a model for 'T]pi and thus for f p robit(7rpi): 

K 

'T]pi = L ßkXik + OpOZiO, 

k=O 

(1. 7) 

with Opo rv N(O, (]"~). Thus, 7rpi = f;;;';bitCi=J:=o ßkXik +OpOZiO). By conven­
tion we do not show the conditional nature of 7r pi and 'T]pi (conditional on 
Opo, also not in the following when 7rpi and 'T]pi may be defined conditionally 
on other random variables). 

This, then, is the normal-ogive random-intercepts model. The model has 
three components: the first to connect Y pi to 7rpi, the second to connect 7rpi 

to 'T]pi, and the third to connect 'T]pi to the Xs and Zoo 

First, the component that relates Y pi to 7rpi is the distributional or ran­
dom component. Formally, Y pi rv Bernoulli(7rp i), and all Ypis are indepen­
dent. Remember that 7rpi is the probability of Y pi = 1 given Opo. Figure 
1.4 gives a graphical representation of the random component. This fig­
ure and the following two are pieces of a larger representation that will 
be introduced at the end of this section. The wiggly line symbolizes the 
distribution of Y pi given 7rpi. Dotted circles (or ellipses) represent random 
variables (including effect parameters) and elements that are a function of 
these such as 7r pi and 'T]pi. 

Bernoulli 

('~'~:"''''N .' ~~'i ..... ) 
....... . ... / ............... ... 

FIGURE 1.4. The random component. 

Second, the component that links the expected value of the binary obser­
vations, 7rpi, to the expected value of the underlying continuous variable, 
'T]pi, is the probit link function. Formally, 'T]pi = f probit(7rp i)' Figure 1.5 gives 
a graphical representation of the link function. 

probit ..... 
:/ '.... link /., " .... 
i 1tpi ;-' --; TIpi ) 
'\... . ... / ....... ..,/ 

FIGURE 1.5. The link function. 

Third, the component that links 'T]pi, the expected value of the under­
lying continuous variable, to the predictors, X sand Zo, is the systematic 
component. Formally, 
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K 

"'pi = L ßkXik + OpOZiO. (1.8) 
k=O 

The function value, "'pi, is called the linear predictor of Ypi in the statis­
ticalliterature. Since in this volume we will often use the term 'predictor' 
for the Xs and Zs, this statistical terminology could be confusing, and 
hence we will use the term linear component. Figure 1.6 gives a graphical 
representation of the linear component. 

linear component 

FIGURE 1.6. Graphical representation of the linear component. 

The arrows in Figure 1.6 represent the linear effects of the predictors, 
and the circle and the ellipse on the arrows represent the size of the effects. 
As can be seen, Opo is represented with a dotted circle, in agreement with 
the convention that was made earlier regarding random effects. The X sand 
Zo, and the ßs have fixed values (known and unknown, respectively); they 
are not random variables, and hence they are represented within asolid 
line. Together, Figures 1.4, 1.5, 1.6 define the elements of the more com­
plex Figure 1.7 that represents the whole normal-ogive random-intercepts 
model with its three components. This kind of graphical representation will 
also be used in many of the following chapters, but not in all. For some 
of the models we will discuss the graphical representation would be too 
complicated for what it illustrates. 

linear component 

FIGURE 1.7. Graphical representation of the normal-ogive random-intercepts 
model. 
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Without the independence assumption, the variance of the observations 
may be larger or smaller than what can be expected on the basis of inde­
pendent Bernoulli distributions. In case of positive dependence, the vari­
ance will be larger, and in case of negative dependence, it will be smaller. 
When the variance is larger than 7rpi(1 - 7rpi), it is called overdispersion. 
Overdispersion sterns from neglected sources of variance and therefore from 
neglected predictors or random effects. Overdispersion is a sign that the 
model is incomplete. For a furt her explanation, see Section 1.7.4. 

1. 7.3 The logistic random-intercepts model 

A popular alternative for the probit link is the logit link: r]pi = !logit(7rpi), 
or r]pi = log(7rpd(1 - 7rpi)). The function value of !logit(-) is the natural 
logarithm of (in this chapter) the prob ability of aI-response divided by 
the prob ability of a O-response. This function leads to a value that, when 
multiplied by 1.7, approximates the result of the probit link quite weIl: 
1.7!logit(7rpi) ~ !probit(7rpi) (Birnbaum, 1968; Camilli, 1994). 

The logistic model is no longer based on an underlying normally dis­
tributed error term, cpi. The error term is now a logistic error term. Its 
distribution has a larger variance and somewhat heavier tails than the 
standard normal distribution. For the best approximation of the standard 
normal distribution, one should divide by 1. 7 which implies that the effects 
are multiplied by 1.7. This explains the multiplicative factor. 

The popularity of the logit link is based on the fact that it is the canonical 
link for the binomial (and Bernoulli) distribution, while the probit link is 
not (see Chapter 4 for an explanation of the canonicallink). The logit link 
has a very simple mathematical form, the logarithm of the odds, and is 
also easy to interpret. A discordant feature is that the logistic model with 
random effects involves two different kinds of distributions: the logistic 
distribution for the error term, cpi, and the normal distribution for the 
person random effects, (}po. 

The resulting model is the logistic random-intercepts model. It differs 
from the normal-ogive model only because it has a different link function, 
which has consequences for the error term of the hypothetical underlying 
continuous variable. 

1.7.4 Scaling issues 

The normal-ogive and the logistic models are scaled in a particular way. The 
fixed effects (ßs) and the variance of the random effect (o-~) are expressed 
relative to o-c; (to 0-; in case of o-~), the standard deviation of the error 
term of the hypothetical underlying continuous variable. Because of the 
hypothetical nature of this continuous variable, the value of o-c; is fixed to 
a value that is determined by convention (see Section 1.7.1). 
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A first consequence of this relative way of expressing effects is that a 
different convention leads to a different scale for the effects. This explains 
the multiplicative factor to approximate the normal-ogive effect values from 
a logistic model. One can see the logistic model as one with a different 
convention (a larger (Je)' 3 When the effects are expressed relative to a 
larger (Je' then they are of course expressed in smaller values. 

A second consequence of this relative way of expressing effects is that the 
scale is reduced when a source of variation is not included in the model. 
Such non-included effects become part of the error term. Since (Je has a 
fixed value by convention, the effects that are included will be expressed 
through reduced values. This is for example the case for the fixed effects 
when the random intercepts are not included. The reduction factor is not 
easy to determine, but for the logistic random-intercepts model it is known 
to be 157r/16V3 or 1.7 (divide by 1.7 to obtain the reduced values) (see 
Chapter 4). 

1. 7.5 Item response models 

The normal-ogive random-intercepts model and its logistic variant are in 
fact two well-known item response models. This can be seen from the fol­
lowing: 

1. The random intercept, BpOZiO from Equation 1.5, corresponds to the 
person parameter, often denoted as Bp , and often called 'ability.' 

2. When the item predictors are dummy variables meant to identify the 
items (Xik = 1 if i = k, and X ik = 0 if i =f. k), then the fixed effects, 
the ~{[ ßkXik term from Equation 1.5, corresponds to the item parameter, 
further denoted as ßi (~{[ ßkXik = -ßi), and often called 'item difficulty.' 
It is a convention that a negative sign is used for ßi: 

(1.9) 

so that 7rpi depends on the difference between Bp and ßi, the difference 
between the person's 'ability' Bp and the item's 'difficulty' ßi' Because 
K = litern predictors are used for I items, the constant predictor must be 
omitted to render the model identifiable. 

3. The normal ogive in Figure 1.3d was constructed to map (for a varying 
error term) V pi into 7rpi for a given value of Bp (for the particular value 
chosen in Figure 1.3d, 'f]pi < 0). However, when Bp increases so that 'f]pi 

becomes 0, then, following Equation 1.9, Bp would be equal to ßi' Thus, ßi 

is the point on the scale that indicates the value of Bp for which 'f]pi = 0, 

3The standard logistic distribution, with mean 0 and scale parameter 1, is the dis­
tribution used for the logistic error term. It has a variance of 7r2 /3 or 3.29. However, 
the best approximation of the standard normal distribution is not obtained dividing by 
7r/V3 but by (15/16)(7r/V3) or 1.7. 
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and hence, 7rp i = .5. The curve that maps Bp into 7rp i for a given ßi is shown 
in Figure 1.8 for the logistic model. A curve that maps Bp into 7rp i for a 
given item is called an item characteristic curve (ICC), or item response 
junction (IRF). The value of ßi locates the curve. Depending on the value of 
ßi, the IRF is located more to the left or more to the right. The underlying 
continuum is the common continuum for B, ß, and the Vpi , but in the IRF, 
Bp , not Vpi , is mapped into 7rp i far a given value of ßi' 

4. For the logistic model, the IRF is different from a corresponding 
normal-ogive model because of the different link function. The main dif­
ference is that the logistic IRF is less steep, because of the larger variance 
0"; . 
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FIGURE 1.8. Item response function for the logistic random-intercepts model. 

The resulting item response models are one-parameter item response 
models: the Rasch model when a logit link is used, and its normal-ogive 
equivalent (with 'uniform slope') if the probit link is used. They are called 
one-parameter models because the items have only one parameter each: the 
fixed effect of the corresponding item indicator. The one-parameter mod­
els differ from the two-parameter models and the three-parameter models 
in that the latter require two or three item parameters, respectively, to 
describe the IRF. In the two-parameter models, an item-specific weight is 
used for the random intercepts so that the slope of the IRF depends on the 
item, and in the three-parameter model, in addition the lower asymptote 
of the IRF depends on the item. 

For an orientation in the literature of item response models (since 1990), 
one can consult one or more of the following publications: Bond and Fox 
(2001) (introductory) and Fischer and Molenaar (1995) for the Rasch model, 
and, for item response models beyond the Rasch model, see Baker (1992), 
Bock (1997), Boomsma, van Dijn, and Snijders (2001), Embretson and 
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Reise (2000), Hambieton, Swaminathan, and Rogers (1991), McDonald 
(1999), Thissen and Wainer (2001), and van der Linden and Hambleton 
(1997). They differ in generality and technicality, and in the variety of 
what they offer. For the combination of a broad overview and an in-depth 
discussion, the edited books by Fischer and Molenaar (1995) and van der 
Linden and Hambleton (1997) are to be recommended. 

1.8 Generalized linear mixed models 

Models that require a transformation in the form of a link function before 
the observations are related to predictors through a linear function are 
called generalized linear models (GLM) (McCullagh & NeIder, 1989). They 
are 'generalized' because the freedom of a transformation is allowed before 
the linear function applies. If such a model includes one or more random 
effects, it is called a generalized linear mixed model (GLMM) (Breslow & 
Clayton, 1993; Fahrmeir & Tutz, 2001; McCulloch & Searle, 2001). 

The GLMMs are a broad category of models, of which the random intcr­
cepts pro bit and logit models are just two instances. Other functions may 
be considered for the link function, and other parameters besides the inter­
cept may be random instead of fixed. It was only for didactic reasons and 
to prepare for Chapter 2 that we have concentrated on random-intercepts 
models. The item response models that will be discussed in the next chap­
ter are also random-intercept models, and therefore GLMMs, but in later 
chapters many other item response models will be discussed from a GLMM 
perspective. For a similar view, see Mellenbergh's (1994) generalized lin­
ear item response theory (GLIRT) and the generalized latent trait models 
proposed by Moustaki and Knott (2000). A similar approach is describcd 
for a multilevel context by Goldstein (2003), Kamata (2001), Raudenbush 
and Bryk (2002), and Snijders and Bosker (1999). For an introductory pre­
sentation of GLMMs in a context of repeated observations similar to the 
context of item response models, see Agresti, Booth, Hobert, and Caffo 
(2000). 

All generalized linear mixed models have three components, just as for 
the random-intercepts models which are a special case of a GLMM. 

1. The random component describes the distribution function of Ypi with 
J.lpi as the mean of the distribution (J.lpi is conditional on the random ef­
fects). In the models for binary data the independent Bernoulli distribution 
is used when only one observation is made for each pair of p and i. In that 
case J.lpi = 7fpi. The Bernoulli distribution is a binomial distribution with 
n = 1. When more than one observation is made per pair of p and i, the 
binomial distribution applies, with n equal to the number of observations. 
For count data, the Poisson distribution is appropriate. If Ypi is a contin­
uous variable, then one can, in principle, again make use of the normal 
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distribution for the error term. When Ypi = /Lpi + cpi, with cpi being nor­
mally distributed, the Ypi are called Gaussian outcomes. Binary data are 
clearly not Gaussian out comes. 

2. The link function connects the expected value of the observed vari­
able to the linear component rJpi, rJpi = fnnk(/Lpi), with fund,) as the link 
function. Thus far we have encountered two link functions: the probit link 
and the logit link, yielding normal-ogive models and logistic models, re­
spectively, but also other links are possible. For example, for count data, a 
logarithmic link is commonly used. 

3. The linear component defines rJpi as a linear function of the predictors, 
the Xs and Zs. In mixed models there are two types of predictors: those 
with a fixed weight (the Xs) and those with a random weight (the Zs). The 
general formulation of the linear component of a GLMM can be written as: 

K J 

rJpi = L ßkXik + L (}pjZij, (1.10) 
k=O j=O 

with a multivariate normal distribution for the (}s and means equal to zero 
and a covariance matrix ~: ()p rv N(O, ~). In matrix notation this is: 

"1p = Xß + Z()p. (1.11) 

See Equations 1.3 and 1.4 for similarities with Equations 1.10 and 1.11, 
and Section 1.6.3 for an explanation of the right-hand side matrices and 
vectors of Equation 1.11. The error does not appear in Equations 1.10 and 
1.11, because they are expressions for expected values. Again the subscripts 
p are omitted for X ik and X, Zij and Z, without excluding they can depend 
onp. 

As has been foreshadowed in this chapter, later chapters will see alter­
ations on the basic pattern of the random-intercepts models. We will also 
go one step furt her and also present models that go beyond the GLMM 
framework, because they cannot be formulated with a linear component, 
but require a nonlinear component instead, for example, item response 
models with item discriminations (Birnbaum, 1968). Models of this type 
are called nonlinear mixed models (NLMM) (e.g., Davidian & Giltinan, 
1995; Vonesh & Chinchilli, 1997). When the nonlinear aspect of a model 
sterns from the link function, as in a GLMM, the model is called 'gen­
eralized linear' (GLMM), but when the nonlinearity sterns from rJpi not 
being linear in the parameters, it is no longer called 'generalized linear,' 
but rather 'nonlinear' (NLMM). A nonlinear component is then substituted 
for the linear component. 

A description of a general framework for item response models as illus­
trations of GLMMs and NLMMs is given by Rijmen, Therlinckx, De Boeck, 
and Kuppens (2003). The features of a GLMM can be graphically repre­
sented as in Figure 1.9. The graphical representation shows the three parts 
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of the model, from the left to the right: the random component (denoted 
with the wiggly line) connecting Ypi and jLpi through a distribution function 
of some kind; the link function (denoted with a straight line) connecting jLpi 

to 'r/pi; and finally the linear component, connecting 'r/pi to its linear predic­
tor sets X and Z, through ßk'S and Bpj's, respectively. As can be seen, the 
general formulation includes a random intercept as weIl as random slopes 
(since j = 0, .. , J). 

linear component 

distribution probit XiO , ... , XiK 
function link 
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FIGURE 1.9. Graphical representation of a GLMM. 

1.9 Philosophical orientation 

The approach that we have adopted throughout this volume, and the one 
that has motivated the introduction in the previous sections of this chap­
ter, is based on a certain philosophical position regarding the relationship 
between the disciplines of measurement and statistics. On the one hand, 
there is a long history of statistical methods being used as a basis to test 
hypotheses in social sciences. Almost invariably, these hypotheses relate to 
general effects of design factors one is interested in because of theoretical or 
exploratory reasons, as in experimental psychology. The statistical analysis 
that is being conducted under this perspective we have labeled explanato'rY 
analysis, because the principal aim is to explain the dependent variable 
on the basis of the design factors under consideration. Of course, from a 
more general view, one might call this an instantiation of 'data analysis' or 
'statistical modeling.' On the other hand, there is another perspective, also 
with a long history, that aims instead to measure individuals (and, conse­
quently, items) on one or more constructs (or latent variables), which are 
sometimes theoretically derived, sometimes not. Here the purpose of using 
the measures is very often descriptive, in order to assign numbers to the 
persons (and the items), and only in a next step explanation is considered, 
if at all. In the introduction, we have mentioned prediction and evaluation 
in the next step as alternative reasons to measure. The measurement that 
is being conducted in this perspective will be labeled desc'riptive measu're­
ment, even when meant for explanation, prediction or evaluation in the 
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next step. In many cases when we need to know an individual's measure, 
the measure is used as the basis for some action regarding that individual, 
based on an explanation, prediction, or evaluation. 

Under the perspective of an explanatory analysis (but not for a descrip­
tive measurement), one might prefer to ignore the individual differences 
that are the traditional target of measurement, and historically this has 
been common. However, there are weIl-established reasons why one should 
not, hence, one should seek to control for individual differences. On the 
contrary, under the perspective of descriptive measurement, measuring in­
dividual differences is the prime objective of the effort, without any nec­
essary interest in systematic effects that may explain the observations. On 
the surface, the two perspectives seem to be in conflict, but in fact they 
can be combined into what we will call explanatory measurement. 

Our thesis is that a common core of statistical models can be used un­
der either or both of these perspectives, as weIl as under their combina­
tion. With item response models being framed within the broad family of 
GLMMs and NLMMs, these models can be used either primarily for ex­
planatory analysis, or primarily for descriptive measurement, or for both 
- i.e., for 'explanatory measurement' - depending on one's theoretical and 
practical research purposes. For example, for many practical purposes de­
scriptive measurement suffices, and for many theory-testing purposes, an 
explanatory analysis suffices. But we believe that for both kinds of pur­
poses, explanatory measurement can provide important improvements -
this will be explicated in Chapter 2 and the chapters that follow. 

1.10 Exercises 

1. Sternberg (1977) uses response times for verbal analogy problems as a 
dependent variable. The analogy problems have a format such as 'A relates 
to B as C to ?' The response times seem to increase linearly with the num­
ber of feature differences between A and B. Suppose that this number is 
one of the predictors (called XAB) in an individual linear regression analy­
sis. What is the meaning of the weight (ßAB) of this predictor? 

2. Why might it be a problem to analyze responses on a 4-point scale 
(from 1 to 4) as continuous data using the LMM? What if it were a 7-point 
scale? 

3. Formulate the LMM as a GLMM. In other words, define the random 
component, the link function, and the linear component. 

4. When you know Tjpi and ()~ (mean and variance of Vpi , respectively), 
can you then express the variation of Vpi on the probability scale, indi-
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cating the 95% confidence interval, with 7rpi as the expected value, for the 
normal-ogive model and (approximately) for the logistic model? How can 
you reconcile this continuous variation when expressed on the probability 
scale with the fact that the observations are binary? 

5. In the general description of the GLMM, 7rpi is replaced with J-lpi (the 
expected value of Ypi given the random effects). Why is this? When does 
it hold that 7r pi = J-lpi? 
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Chapter 2 

Descriptive and explanatory 
item response models 

Mark Wilson 
Paul De Boeck 

2.1 Introduction 

In this chapter we present four item response models. These four models 
are comparatively simple within the full range of models in this volume, 
but some of them are more complex than the common item response mod­
els. On the one hand, all four models provide a measurement of individual 
differences, but on the other hand we use the models to demonstrate how 
the effect of person characteristics and of item design factors can be in­
vestigated. The models range from descriptive measurement for the case 
where no such effects are investigated, to explanatory measurement for the 
case where person properties and/or item properties are used to explain 
the effects of persons and/or items. 

In the following sections of this chapter we will concentrate on logistic 
models, but all that is said also applies to normal-ogive models if the logit 
link is replaced with the probit link. The models we will discuss are all 
GLMMs with random intercepts and fixed slopes. 

2.1.1 The intercept or person parameter 

Typically, the intercept in an item response model is one that varies at 
random over persons. It is therefore called the person parameter. In the 
notation for item response models, it is commonly denoted by ()p- It is 
assumed in this chapter that ()p is normally distributed with mean zero: 
()p '" N(O, O'~). 

The random intercept or person parameter fulfills the function that is 
often the main reason why people are given a test. Person parameters pro­
vide a measurement of latent variables such as abilities, achievement lev­
els, skills, cognitive processes, cognitive strategies, developmental stages, 
motivations, attitudes, personality traits, states, emotional states or incli­
nations. A general term that we will use for what is measured in a test 
is propensity. Alternatively, another conception of the person parameter is 
that it can also be (a) a fixed parameter, and/or (b) more than one person 
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parameter (i.e., in a multidimensional model). We will elaborate on these 
possibilities only later. For now, it suffices to know that the random inter­
cept is a person parameter and that the estimate for an individual person 
is considered a measurement of the propensity expressed in the test. 

As a measurement tool, item response models of the type we are dis­
cussing provide more than ordinal quantification. However, an important 
alternative approach is to restrict quantification to ordinal numbers. Ordi­
nal item response models are often also called nonparametric item response 
models (Junker & Sijtsma, 2001; Sijtsma & Molenaar, 2002). The important 
asset of nonparametric models is that they make no assumptions regarding 
the item response functions, except for monotonicity assumptions. Thus, 
they are more flexible than parametric item response models. However, the 
family of nonparametric models has been developed mainly for measure­
ment purposes. It is not yet fully elaborated for explanatory purposes to 
investigate the effect of person properties and item properties (such as fac­
tors in an experimental design). Thus, in this volume, we will concentrate 
on parametric models. 

2.1.2 The weights or item parameters 

As in Chapter 1 we will denote the item predictors by an X, with subscript 
k (k = 1, ... ,K) for the predictors, so that X ik is the value of item i on 
predictor k. The most typical predictors in an item response model are 
not real item properties as in Chapter 1, but item indicators. This means 
that as many predictors are used as there are items, one per item, so that 
X ik = 1 if k = i, and X ik = 0 if k =I- i. For example, for a set of six items, 
the predictor values would be as follows: 

item 1: 
item 2: 
item 3: 

100 
010 
001 

000 
000 
000 

item 4: 
item 5: 
item 6: 

o 
o 
o 

o 
o 
o 

o 
o 
o 

1 
o 
o 

o 
1 
o 

o 
o 
1. 

In typical item response modeling applications, the weights of these pre­
dictors are fixed parameters since they do not vary over persons. These 
weights are the slopes of the binary indicators (see Figure 2.1). The values 
of these indicator weights are called the item parameters, commonly de­
noted by ßi. Since each item has its own predictor, the subscript i is used 
instead of k. 

2.1.3 Resulting models 

The resulting equation for the linear component 'flpi is the following: 

'flpi = ßi + (}p, (2.1) 

with ßi = ~::=l ßkXik· As noted in Chapter 1, 'flpi is 'flpil(}p, but here and in 
the following we will omit the conditional notation for 'flpi (and 7rpi). Since 
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all Xik with i =F k equal 0, only one term of this sum has a non-zero value. 
It is a common practice to reverse the sign of the item parameter, so that 
the contribution of the item is negative and may be interpreted as the item 
difficulty in the context of an achievement test. The resulting equation is: 

(2.2) 

In order to convey some intuitions about the intercept and coefficients used 
above, we give, in Figure 2.1 a graphical representation of Equation 2.2 for 
person p and the kth predictor. The value of X ik is represented on the 
x-axis. X ik can have two values: 0 and 1. For k = i, the value is 1 for 
item i, and 0 for all other items. This simply means that item i makes 
no contribution for other items. Note that the intercept of the regression 
line is the value of () at X ik = O. Also note that the difference between 
Xik = 1 and Xik = 0 is 1, and the difference between the Tfpi for Xik = 1 
and Xik = 0 is -ßi, hence the slope of the line (i.e., the regression weight) 
is also -ßi' Other persons will have a parallel line, but the intercepts of 
the line will vary (and we have assumed they follow a normal distribution). 
Figure 2.1 does not give the full picture since it represents the effect of 
only one predictor, the item indicator k = i. Figure 2.1 is also somewhat 
imaginary in the sense that our item indicators can have only two values, 
while the line connecting the two points suggests that intermediate values 
can also exist. 

FIGURE 2.1. Linear function for one item predictor in the Rasch model. (Note 
that in this case ßi < 0.) 

The resulting model of Equation 2.2 (or, equivalently, 2.1) is the Rasch 
model (Rasch, 1960). The Rasch model is a model that is descriptive for 
both the person side and the item side of the data matrix. It describes 
variation in the persons through a person parameter ()p, which is a ran­
dom variable as presented here. And it describes the variation in the items 
through fixed individual item parameters. 
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2.2 Four item response models 

The primary aim of this chapter is to illustrate the distinction between a 
descriptive approach and an explanatory approach in the context of item 
response modeling. In the course of illustrating the distinction, we will 
present four item response models one of which is the Rasch model from 
Equations 2.1 and 2.2. The four models differ in whether they are descrip­
tive or explanatory at the person side and the item side. 

The four models we have selected to present below are logistic random­
intercepts models and therefore belong to the Rasch tradition, but this 
does not mean we are in this volume restricting our possible models to that 
approach. In the Rasch tradition, which might also be called prescriptive 
measurement (Rasch, 1960; Fischer & Molenaar, 1995), models include no 
interactions between persons and items, but just main effects of persons and 
items - specificaIly, the random intercept, (}p, is not weighted depending 
on the item. If there were such interactions, then the effect of a person 
parameter would depend on the items, and therefore, by implication, in the 
inferential step, the measurement outcome would necessarily also depend 
on the items that are included. This prescriptive measurement approach 
is only one of two measurement approaches that are commonly followed 
with item response models (Thissen & Orlando, 2001; Wilson, 2003). The 
alternative approach might be termed empirical in that one seeks to modify 
the model to fit the data more closely - specificaIly, the model is expanded 
by weighting the random intercept by an item parameter Cl:i (Birnhaum, 
1968). Such a model is called the two-parameter logistic model (2PL model) 
Thus, in the empirical tradition, relatively more items will fit the model 
than in the prescriptive tradition, although there will be items that do not 
fit weIl under either tradition. 

The basis for selecting these particular models for this second intro duc­
tory chapter is that they are building blocks which can serve as the basis 
for the very extensive expansion of the models in the remainder of this 
volume, and which will include, as one aspect, adding the second item pa­
rameter Cl:i, typical of the empirical tradition. After the model formulation 
and discussion for each of the four models below, an application will be 
discussed, making use of the dichotomized example data from Chapter 1. 

Table 2.2 shows four types of models, depending on the types of pre­
dictors that are included. There are two kinds of item predictors: item 
indicators, and item properties. And there are also two kinds of person 
predictors: person indicators, and person properties. Look first at the top 
left-hand corner of the 2 x 2 layout of Table 2.1. When each person has 
his/her own unique effect, unexplained by person properties, and when 
each item has its own unique effects, unexplained by item properties, we 
will refer to the model as doubly descriptive. Such a model describes the in­
dividual effects of the persons and of the items (hence, doubly descriptive), 
without explaining either of these effects. The Rasch model is an example. 
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TABLE 2.1. Models as a function of the predictors. 

Person predictors 

Item predictors Absence of properties Inclusion of properties 
(person properties) 

Absence of properties doubly descriptive person explanatory 

Inclusion of properties item explanatory doubly explanatory 
(item properties) 

Doubly descriptive models are mostly sufficient for measurement purposes, 
and are those most commonly seen in practice. 

However, if the person parameter is considered to be a random effect, 
then there may be unwanted consequences if the effect of certain person 
properties is not taken into account. If a normal distribution is assumed, 
the result is that the normal distribution no longer applies for the entire 
subset of persons, but only for subsets of persons who share the same 
person property values. For example, if gender has an effect, then not one 
normal distribution applies but two, differentiated by the gender of the 
person. Thus, when person properties are included in the model to explain 
the person effects, then the models will be called person explanatory (top 
right-hand corner of Table 2.1). 

In a similar way, when item properties are included to explain the item 
effects, the models will be called item explanatory (bottom left-hand corner 
of Table 2.1). Finally, when properties of both kinds are included, the 
models will be called doubly explanatory (bottom right-hand corner of Table 
2.1). See Zwinderman (1997) and Adams, Wilson and Wu (1997) for similar 
taxonomies and short descriptions of the models. In the verbal aggression 
example data set from Chapter 1, we have information on person properties 
as well as on item properties, so that the two types of explanatory models 
(person and item) can be illustrated. 

2.2.1 Summary and notation 

A summary of the four models to be explained is given in Table 2.2. The 
following notation is used in the table and will be followed also in the re­
mainder of this chapter. Bp is used for the random person parameter, with 
mean zero and variance a~. When person properties are included in the 
model, the symbol cp is used for the unexplained part of the person contri­
bution, with mean zero and variance a;. The person properties are denoted 
with capital Z. The subscript j is used for these predictors, j = 1, ... ,J. 
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TABLE 2.2. Summary of the four models. 

""pi = 

Model Person part Item part Random effect Model type 

Rasch model 6p -ß; 6p ~ N(O, a~) Doubly 
descriptive 

Latent reg 2:::=1 {)jZpj + Ep -ß; Ep ~ N(O, a;) Person 
Rasch model explanatory 

LLTM 6p - 2::~=o ßkX;k 6p ~ N(O, a~) Item 

Latent reg 

LLTM 

explanatory 

Doubly 

explanatory 

This is a deviation from the GLMM notation where Z is used for predictors 
with a random effect. The GLMM notation is the notation that is followed 
in Chapter 4 on the statistical background of this volume and in Chapter 
3 on multicategorical data also because that chapter reHes more directly 
on the general GLMM framework. Rather than distinguishing between the 
predictors on the basis of whether they have a fixed or random effect, we 
use here a different notation for person predictors and item predictors, be­
cause they lead to quite different item response models and because in these 
models persons and items are not treated in an equivalent way, as will be 
explained in Sections 2.4.1, 2.5.1, and 2.6.1. This leaves the X for the item 
predictors, with subscript k, k = 1, ... ,K. Where the effects of person pre­
dictors are considered fixed, they are denoted by {) j, and the fixed effects of 
item predictors by ßk. The random intercepts may be considered the effect 
of a constant predictor (Zpo, or alternatively X iO ). 

2.3 A doubly descriptive model: the Rasch model 

2.3.1 Formulation of the model 

The Rasch model was defined earlier in Equations 2.1 and 2.2. We will use 
Equation 2.2 to obtain an expression for the odds, or 7rpd(1-7rpi). If on both 
sides ofEquation 2.2 the exponential form is used, then exp(r]pi) = exp(Bp-
ßi). Since r]pi = log(7rpd(1 - 7rpi)), and exp(Bp - ßi) = exp(Bp)j exp(ßi), it 
follows that 

(2.3) 

Equation 2.3 is the exponential form of the Rasch model. As a way to 
understand Equation 2.3, interpret exp(Bp) as an exponential measure of 
the ability of person p when taking an achievement test, and interpret 
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exp(ßi) as an exponential measure of the difficulty of the item i from that 
test. Then the formula expresses the ratio of the success probability 7rp i 

to the failure probability (1 - 7rpi) as the ratio of a person's ability to the 
difficulty of the item. 

The intuition refiected in the formula, in an achievement context, is that 
ability allows one to succeed, while difficulty makes one fail, and that the 
ratio of both determines the odds of success. Figure 2.2a gives a schematic 
presentation of this intuitive idea. The figure shows two rectangles on a 
balance beam - if one weighs more than the other, then the balance will 
tip that way. Physical balance beams tip one way as soon as the weight 
on that side is larger than the weight on the other side. Imagine now that 
tipping one way or the other way in an achievement context is probabilistic 
as follows. The white rectangle represents the ability and the gray rectangle 
the difficulty. The ratio of ability to difficulty is 2/1, so that the ratio of 
the success prob ability to the failure probability is also 2/l. 

From the odds equation, one can derive the equation for the probabil­
ity. If the numerator on each side of Equation 2.3 is divided by the sum 
oft he numerator and the denominator , it follows that 7r pd (7r pi + (1-7r pi)) = 
exp(Bp)/(exp(Bp)+exp(ßi)) , and thus that 7rpi = exp(Bp)/(exp(Bp)+exp(ßi)). 
When the numerator and denominator of the latter are each divided by 
exp(ßi) , then the familiar equation for the probability of a 1-response is 
obtained: 

(2.4) 

The intuition behind this alternate formula for the Rasch model is that 
there are two competing responses each of which has a certain attractive­
ness. Let us denote the attractiveness of Ypi = 0 as A and the attractiveness 
of Ypi = 1 as B. The probability of a response may then be considered the 
ratio of its attractiveness to the sum of the two attractiveness values, or 
7rpi = B/(A+B). This is an example ofthe well-known Bradley-Terry-Luce 
choice rule: the probability of an alternative depends on the ratio of the 
attractiveness of that alternative to the sum of the attractiveness values of 
all alternatives. In Equation 2.4, A = 1, and B = exp(Bp - ßi). The value of 
1 for A is an arbitrarily chosen convention (i.e., the value of 7rp i is invariant 
under multiplicative transformations of the attractiveness values, so that 
one may as well set A equal to 1). 

The intuition behind Equation 2.4 is presented in Figure 2.2b. The two 
attractiveness values are each represented by a section of a rectangle: the 
gray section for the O-response, and the white section for the 1-response. 
The probability of each response is the proportion of the corresponding 
section in the rectangle. The white section is twice as large as the gray 
section, so that the resulting prob ability of a 1-response is 2/(2 + 1) = .67. 

The link between Figure 2.2a and Figure 2.2b is that the two rectangles 
of the upper part are first shrunken in equal proportions, and then put next 
to one another to form one long rectangle. This is a legitimate operation 
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(a) 

exp(llp} exp(I3,) 11"p;f(1-npi)= ability item 
exp(Bp)/exp(ßi) difficulty 

~ 
(b) 

A=1 11"pi =B/(A+B) 
inc:orrect B=exp(9p- ß I) 
response eorreet response 11"pi =exp(9p - ßi )/[1 +exp(Bp - ßi)] 

FIGURE 2.2. Illustration of two ideas behind two different formulations of the 
Rasch model: (a) odds formula, and (b) probability formula. 

since 7f pi is invariant under multiplicative transformations of the rectangles. 
The transformation illustrates that both exp(Bp ) and exp(Bp - ßi) may be 
understood as the attractiveness of al-response, and both exp(ßi) and I as 
the attractiveness of a O-response, depending on whether or not one divides 
byexp(ßi). 

A third metaphor is one of a hurdler (the person) and aseries of hurdles 
(the items). The hurdler is seen as having the ability to leap over hurdles of a 
certain height (the ability is indicated by Bp ), and the series of hurdles have 
heights indicated by the series of item difficulties (ßl, ... , ß I). When the 
hurdler's ability is equal to the height of the hurdle, the leap is successful, 
with a probability of .50. When the hurdler's ability is different than the 
height of the hurdle, the leap is successful, with a probability dependent on 
the difference between them (when the difference is positive, the prob ability 
will be greater than .50, and when it is negative, it will be less than .50). 
This metaphor is possibly better-suited to achievement and ability contexts 
than other such as attitude variables, but similar interpretations in such 
contexts are also possible. 

In a fourth metaphor, one can represent the heights of the hurdles (the 
item difficulties) as points along a line, and the ability of the person as 
a point along the same line. The amount determining the probability of 
success is then the difference between the two locations, or (Bp - ßi). This 
representation is sometimes called an 'item map' or 'construct map.' A 
generic example is shown in Figure 2.3, where the students are shown on 
the left-hand side, and the items on the right-hand side. This representa­
tion has been used as a way to enhance the interpret ability of the results 



2. Descriptive and explanatory item response models 51 

from item response model analyses. Segments of the line can be labeled 
as exhibiting particular features, for both the persons and the items, and 
the progress of say, students, through this set of segments, can be inter­
preted as development in achievement. The placement of the person and 
item locations in a directly linear relationship has been the genesis of an 
extensive methodology for interpreting the measure (Masters, Adams, & 
Wilson, 1990; Wilson, 2003; Wilson, 2005; Wright & Stone, 1979). 

Direction of 
increasing ability 

Students 

Students with high 
ability 

Students with rnid-range 
ability 

Students with low 
ability 

Iterns 

Itern response indicates highest 
level of ability 

Itern response indicates rnid­
range level of ability 

Itern response indicates lower 
level of ability 

Direction of 
decreasing ability 

FIGURE 2.3. A generic construct map for an ability. 

Item response junction 

Item response functions or item characteristic curves are item specific func­
tions that map the value of Op into the corresponding prob ability 7fpi, given 
the value of ßi' Figure 2.4 shows the item response functions of three items. 
The shape of Rasch item response functions is the same for all three items, 
but the location is different. All curves are equally steep, because Op is not 
weighted depending on the item. For all items 7fpi = .50 when ßi = Op, 
which indicates that ßi locates the curve on the O-scale. 

Graphical representation 

The Rasch model is graphically represented in Figure 2.5, following the 
conventions introduced in the previous chapter. The figure shows the item 
parameter ßi as the effect of the corresponding item indicator X ik (for 
k = i, the other item indicators are not shown since they don't have an 
effect) , and it shows the person parameter Op as the random effect of the 
constant predictor Zpo. Note that in GLMM notation Z is used far predic­
tors with a random effect, while our notation Z is used for person predictors. 
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FIGURE 2.4. !tem response functions for three items. 

IncidentaIly, the Zpo in Figure 2.5 corresponds with both conventions. It 
is a constant predictor with a random effect, and it may be considered a 
person predictor as weIl, one with a value of 1 for all persons . 

. ' -'\ 

!\ .. ~~~ ... )-----( .. ~~ .... > 
................ ~ 

FIGURE 2.5. Graphical representation of the Rasch model. (Note that k = i.) 

Local independence 

An important feature of the model is the so-called local (or conditional) 
independence assumption, meaning that for any response vector yp 
(YPl, ... ,YpI)' (with Ypi being the realization of Ypi,(Ypi =1 or 0)), the 
conditional prob ability of the whole vector is the product of the condi­
tional probabilities of each response. This implies that, for all pairs of 
items i and i' (i i= i'): Pr(Ypi = Ypi & Ypi' = Ypi' [Bp) = Pr(Ypi = Ypi[Bp) X 

Pr(Ypi' = Ypi' [Bp). Under this assumption, Bp is the only source of depen­
dence (or correlation) between items - hence, for a given value of Bp the 
observations are independent, which means that one dimension or latent 
trait, Bp , explains all inter-item correlations. The assumption of local in­
dependence underlies all four models in this chapter, and also all models 
in this volume, except for models with a residual dependence part (see 
Chapters 7 and 10 for an explanation of that). 
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Parametrization 

Note that the parameters in the above equations appear in two forms: the 
exponential form, using exp(Op) and exp(ßi), as in Equation 2.3, and the 
logarithmic form, using Op and ßi, as in Equation 2.4. We will use the log­
arithmic form, which is also the most common form. Four different but 
equivalent parametrizations are possible based on the signs of the person 
and item expressions: 
(1) Op - ßi; 
(2) Op + ßi, with ßi = -ßi; 
(3) -0; - ßi, with 0; = -Op; and 
(4) ßi - 0;. 
The difference between the four is that in some contexts, one of them might 
work better in terms of interpretation. For example, taking the difference 
between the item parameter and the person parameter (fourth parame­
trization) could be useful for the verbal aggression example if the person 
parameter is seen as a personal aggression threshold (0;) and the item pa­
rameter as the inductive power of the situation-behavior pair (ßi). The 
prob ability of a verbally aggressive response then grows with the difference 
between the inductive power of the situation-behavior pair and the personal 
threshold. In general, the two subtraction parametrizations (1 and 4) lend 
themselves to metaphors of comparison and competition (e.g., ability and 
difficulty), and are compatible with the intuitions mentioned above whereas 
the two addition formulations (2 and 3) are suitable for an intensification 
metaphor. 

I dentijication 

The model as formulated in the previous equations would have an identiji­
cation problem if the mean of the person parameters was not restricted to 
be zero. The exponential parameters and logarithmic parameters are iden­
tified only up to a multiplicative or additive constant, respectively. If one 
multiplies all exponential parameters with a constant c, then the odds in 
Equation 2.3 do not change, and if one adds a constant c to alliogarithmic 
parameters, then the prob ability in Equation 2.4 does not change. Different 
conventions exist to solve this problem. For instance, one can set the mean 
Op equal to 0, which is the solution we have chosen for this volume, or one 
can set either a particular ßi or the mean of the ßi equal to 0, which are 
the most common tactics if Op is not considered a random effect. 

Variants 

The Rasch model exists in three variants named after the formulation of 
the likelihood to be maximized (Molenaar, 1995). There are three likeli­
hood formulations for the model: the joint maximum likelihood formula­
tion (JML), the conditional maximum likelihood formulation (CML), and 
the marginal maximum likelihood formulation (MML). The labels of the 
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three formulations refer to a maximization of the likelihood function for 
estimation purposes. The likelihood function is the probability of the data 
as a function of the parameters, and, in the case of CML, also of the suffi­
cient statistics for the person parameters. It has been common to consider 
the three different formulations as no more than three estimation tools, but 
they can also be considered as being based on different models, as explained 
in Chapter 12 of this volume. We will follow here the MML formulation, 
meaning that we assume that the person parameters are sampled from a 
distribution, so that only the parameters of that distribution (and not the 
individual person parameters) enter the likelihood that is maximized. If 
the distribution is the normal distribution, these parameters of the distri­
bution are the mean and the variance. In all applications up to Chapter 
10, the normal distribution will be used for person parameters. Other dis­
tributions can also be used - for example a histogram distribution can be 
particularly flexible (Adams, Wilson, & Wu, 1997; de Leeuw & Verhelst, 
1986; Follmann, 1988). 

MML formulation and estimation of person parameters 

For the MML formulation, a more complete way of presenting the model is 

1fpi = exp(Op - ßi)/(1 + exp(Op - ßi)), 
Op rv N(O, a~), 

(2.5) 

with a~ being the variance of the Op, and assuming local independence. 
The corresponding marginal likelihood for a full response pattern (Yp as 
the realization of Y p ) is 

with g(Opl'l/l) as the normal density of Op with parameters '1/1 (/-Le and a~). 
For all persons together, the marginallikelihood is the product of the cor­
responding integrals. The marginal likelihood will not be repeated for the 
next three models, since one can simply adapt Equation 2.6 based on the 
equation for 1fpi. To estimate the model, we need to estimate only the struc­
tural parameters ßl, ... , ß I, and a~ (the mean of the distribution is fixed 
at 0). Therefore, the estimation of Op requires a further step beyond the 
model estimation. A common method for this second step is to calculate 
empirical Bayes estimates; see Bock and Aitkin (1981), Adams, Wilson and 
Wang (1997), or Wainer et al. (2001) for a discussion of the concept within 
the context of item response modeling. These estimates are maximum like­
lihood estimates given the item responses of the person and the assumed 
normal distribution with estimated (or fixed) mean and variance. For a 
discussion and some interesting resuIts on the estimation of person para­
meters for the Rasch model, see Hoijtink and Boomsma (1995) and Warm 
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(1989). The issue of estimating person parameters is the same for all four 
models in this chapter, and in general for all models with a random person 
parameter. 

Comments and literature 

The Rasch model is a doubly descriptive model, since it yields only esti­
mates of the individual item and individual person effects. Its great asset is 
that if it is valid, the person effect does not depend on the item, which is an 
attractive measurement quality and corresponds to certain notions of what 
it means to measure (Rasch, 1961). When the ultimate goal is to assign a 
number to each person in order to measure the person's latent trait, the 
Rasch model is an excellent model. However, there may be complications in 
the data that it does not incorporate, and when it comes to understanding 
the responses in terms of person and item properties, the model itself does 
not help. 

The Rasch model is also called the one-parameter logistic (lPL) model 
because it has only one parameter per item. We will not use this terminol­
ogy for the Rasch model, since a model with unequal but fixed item weights 
(discriminations) is also a one-parameter logistic model (OPLM, Verhelst 
& Glas, 1995). The Rasch model was first described by the Danish math­
ematician and statistician Rasch (1960, 1961, 1967), and it became known 
in the psychometrie literat ure thanks to work by Fischer (1968,1974,1981) 
in Europe and Wright (1968, 1977) in the United States. For a history of 
the Rasch model, see Wright (1997). For a description and discussion ofre­
cent developments in the Rasch model and related models, see Fischer and 
Molenaar (1995) and Rost (2001). Arecent introduction has been written 
by Bond and Fox (2001). A good description of the life and work of Rasch 
is given by Andersen and Olsen (2001). 

2.3.2 Application of the Rasch model 

After a dichotomization (i.e., 2 and 1 are mapped to 1), the example data 
set is analyzed with the NLMIXED procedure of SAS (SAS Institute, 1999), 
in order to estimate the Rasch model in its MML formulation. The options 
we chose for all four models discussed in this chapter are: Gaussian quadra­
ture for numerical integration, with 20 quadrat ure points without adaptive 
centering (with centering on 0), and Newton Raphson as the optimization 
method. When adaptive centering was used, essentially the same results 
were obtained for all four models as with the nonadaptive method - how­
ever, it took much longer to run the analysis. For a discussion of estimation 
methods, see Chapters 4 and 12, and for a discussion of software, see Chap­
ter 12. The use of the NLMIXED procedure of SAS is described in Section 
2.8.l. 

We will not test this model and the other models with respect to their 
absolute goodness of fit. Instead we will do two other things. First, we 
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will repart the value of three indices: the deviance, the Akaike informa­
tion criterion (AIC) (Akaike, 1974), and the Bayesian information criterion 
(BIC) (Schwarz, 1978), with the aim to compare the four models from this 
chapter on these fit indices. The deviance is - 2log( L), with L being the 
maximum of the likelihood function given the estimated model. The AIC 
and BIC are information criteria derived from the deviance, but with a 
penalty included for the number of parameters: AIC = -2Iog(L) + 2Npan 

and BIC = -2Iog(L) + log(P)Npan with N par being the number of para­
meters (far the persons, only the variance is counted as a parameter), and 
P being the number of persons (see also Bozdogan, 1987; Read & Cressie, 
1988). Lower values of the deviance, the AIC, and the BIC indicate a bet­
ter fit. As a comparison makes sense only when at least one other model 
is involved, we will start using these indices only in the discussion of the 
results from the second model; see Section 2.4.2. 

Second, we will use significance tests of the likelihood-ratio type and 
Wald tests. For nested models, we can use likelihood-ratio tests (LR tests). 
The LR test is based on the ratio of two likelihoods. The first likelihood 
(LI) belongs to a model that is nested in a second, mare general model. 
The second likelihood (L2 ) belongs to this more general model. When the 
models are estimated with a maximum likelihood method, then minus two 
times the logarithm of the likelihood ratio, -2Iog(Ld L 2 ), ar the differ­
ence between the deviances, is asymptotically distributed as a X2 with a 
number of degrees of freedom (df) equal to the difference between the num­
ber of parameters of the two models. Further, we will also use Wald tests 
(Wald, 1941) to determine whether the difference of an estimate with zero 
is statistically significant. The asymptotic normality of the parameter es­
timates is the basis for dividing the parameter estimate by its standard 
error, in order to obtain a statistic that is approximately distributed as 
a standard normal. For a discussion of adaptations one may consider for 
this test, depending on the estimation method that is followed, see Verbeke 
and Molenberghs (2000). The LR test does not apply when one wishes to 
compare a model with one or more parameters fixed at a boundary value to 
a model in which these parameters are not fixed but free. For example, the 
regular LR test does not apply when comparing a model with the person 
variance fixed to zero and another model where the variance is estimated. 
For a model with one variance parameter fixed to zero (modell, likelihood 
is LI) and a model where that variance is estimated (model 2, likelihood 
is L2), the LR statistic -2Iog(L1/L2) follows a mixt ure ofaX2(0) and a 
X2 (1) distribution (Verbeke & Molenberghs, 2000). Therefore, the regular 
LR test (which would use X2 (1) as the difference in number of parameters 
is one) is conservative and in fact the p-values must be halved. Given the 
asymptotic equivalence of the Wald test for a given parameter value and 
the likelihood-ratio test to test whether the parameter is needed, the Wald 
test mayaIso be considered conservative. Thus, if the p-value of the Wald 
test (as shown by NLMIXED) is smaller than the critical value, then the 
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correct p-value certainly is sm aller also. 

Results 

Person variance 

The estimated person variance is 1.98 on the logit scale. The standard error 
(SE) of the variance estimate is .21, meaning that the individual differences 
are statistically significant, with p < .001. In general, to interpret an effect 
a on the logit scale, one should multiply the odds by exp(a). In order to 
translate this effect into an effect on the probability, the probability of .50 
can be used as a reference value. The size of the person effects can be 
examined by considering the effect of one standard deviation of {}. Based 
on Equation 2.3, the odds increase by a factor 4.08 when {} increases by one 
standard deviation (i.e., 4.08 is exp( \!l.98)). To illustrate this, suppose a 
person has a probability of .50 of responding with a 1 ("yes" or "perhaps" ) 
on the first item, then someone with a {}-value that is one standard deviation 
higher has a probability of .80. 

Item parameters 

The estimated item parameters vary from -1.75 to +2.97 on the logit scale, 
with an average value of .16. The estimates of the item parameters are 
given in Table 12.3 (Chapter 12). Note that, because of the subtraction 
in the model equations, lower values of the item parameters imply higher 
probabilities (i.e., are 'easier' to endorse). The average item value is only 
slightly higher than the mean of the persons (fixed at zero to identify the 
model). This means that the average person has a probability of about 
.50, or more exactly .46, to endorse the average item (responding "yes" or 
"perhaps"). Note that the effect on the average person is not the average 
effect, as will be explained in Chapter 4. 

Discussion 

The rationale of the Rasch model is in the first place to measure persons 
- in this case, to measure the tendency of individual persons to react with 
verbal aggression. When used for that purpose, the 24 items relating to 
only four situations are a rather narrow basis for a reliable measurement 
(but note that Cronbach's Cl! = .89). One way to estimate the reliability of 
the estimates is to derive the standard error (SE) of each of the person 
parameters. However, since we want to concentrate on the model and not 
so much on its application for measurement, we will not follow up the 
reliability of the person measurement at this point (but see Hoijtink & 
Boomsma, 1995). Instead we will switch to models that can explain person 
variance andjor item parameters. 
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2.4 A person explanatory model: the latent 
regression Rasch model 

2.4.1 Formulation of the model 

The second model that we consider is the latent regression Rasch model. It 
includes person properties to explain the differences between persons with 
respect to verbal aggression. Including person properties as predictors is 
a possibility in GLMMs that we mentioned in Chapter 1, but we did not 
elaborate on this point there. Recall that person predictors are denoted by 
Z, and the predictor subscript with j, while the fixed effect is denoted by 
{}. The model differs from the Rasch model in that Op is now replaced with 
a linear regression equation (see also Table 2.2): 

so that 

J 

Op = L {}jZpj + cp, 

j=l 

J 

'TIpi = L {}jZpj + Cp - ßi, 

j=l 

(2.7) 

(2.8) 

in which Zpj is the value of person p on person property j (j = 1, ... , J), 
{}j is the (fixed) regression weight of person property j, 
cp is the remaining person effect after the effect of the person properties 
is accounted for, cp rv N(O, an, which may be considered as the random 
effect of Zpo, the random intercept. 
Note that the {}j that is used in Equation 2.7 as a symbol for the regression 
weight of a person property is a symbol that differs from Op, which is used 
as the person parameter. 

This model is called here the 'latent regression Rasch mode!', because one 
can think of the latent person variable Op as being regressed on external 
person variables (Adams, Wilson, & Wu, 1997) such as, for the verbal 
aggression example, Gender and Trait Anger. 

The external person variables are considered as variables with fixed val­
ues. When observed person properties are used, the fact that they may 
include error is ignored in this model (i.e., any errors in the Zs are not mod­
eled). An alternative solution would be a regression on the latent variable 
that underlies the observed properties (Fox & Glas, 2003; Rabe-Hesketh, 
Pickles, & Skrondal, 2001). For example, the latent variable underlying the 
Trait Anger score can function as a latent predictor for the verbal aggres­
sion propensity. However, this solution is not part of the latent regression 
Rasch model formulation in this chapter. In principle, it can be incorpo­
rated in the present framework through a multi dimensional model with a 
criterion 0 being a function of predictor Os. Depending on the model this 
may require restrictions on the covariance structure of the Os. For example, 
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when fh has an effect on both O2 and 03 , then this has consequences for the 
correlation between fh and 03 , 

Graphical representation 

Figure 2.6 gives a graphical representation of the latent regression Rasch 
model. The difference with Figure 2.5 is that the person parameter Op 

is explained in terms of person properties (the Zs) and their effects (the 
'!9s), and that the unexplained part or error term is the random effect of 
the constant predictor. One can also connect the two right-most arrows 
directly to 'r}pi, omitting Op, in correspondence with Equation 2.8. 

FIGURE 2.6. Graphical representation of the latent regression Rasch model. 
(Note that k = i.) 

Literature 

The latent regression Rasch model was first described by Verhelst and 
Eggen (1989) and Zwinderman (1991). This latter author used the term 
'generalized Rasch model for manifest predictors' for the global model, 
and 'structural model' for the latent regression part of the model. Similar 
models have been presented by Mislevy (1987) for the 2PL or Birnbaum 
model. For a rather brief but thorough discussion of this model in the 
broader context of the models of this chapter, see Zwinderman (1997). 

2.4.2 Application of the latent regression Rasch model 

Two person properties will be used in the application (J = 2): the Trait 
Anger score (j = 1) and Gender (j = 2). A dummy coding is used for 
Gender, with a 1 for males, and a 0 for females. Of the 316 respondents 
243 are males, and 73 are females. For Trait Anger, the raw score is used 
as a person property; as reference points, the mean score is 20.00 and the 
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standard deviation is 4.85. The use of the NLMlXED procedure for this 
application is described in Section 2.8.2. 

Table 2.3 shows the goodness of fit of the latent regression Rasch model, 
and also of the Rasch model. The lower the value of these indices, the 
better the fit of the model. One should of course take into account the 
number of parameters to make an evaluation, which is why the AlC and the 
BlC are important criteria. As explained earlier, the penalty for number 
of parameters is larger in the BlC. It can be noted from Table 2.3 that 

TABLE 2.3. Goodness-of-fit indices for the four models. 

Model deviance AlC BIC 

Rasch 8072 8122 8216 
latent regression Rasch 8060 8114 8215 
LLTM 8232 8244 8266 
latent regression LLTM 8220 8236 8266 

the latent regression Rasch model has a better fit than the Rasch model, 
although the difference is rather small, especially for the BlC. Based on a 
LR test, the difference is significant (X2 (2) = 12.6, P < .01) meaning that 
the goodness of fit of the Rasch model is lower. 

Person property effects and residual person variance 

There are a number of ways to express the results indicated by the esti­
mated parameters. We mention several of them in the following paragraphs. 

The estimated effect of Trait Anger is .057 on the logit scale, with a SE 
of .016, so that the effect is highly statistically significant (p < .001). The 
value of .057 is the change one would expect, given a change of one unit on 
the Trait Anger score - it corresponds to a multiplication of the odds ratio 
by 1.06. An alternative framework is provided by the standard deviation. 
An increase of one standard deviation (SD) in Trait Anger (instead of one 
unit) represents a multiplication of the odds by 1.32, and the difference 
between - 2SD and +2SD represents a multiplication of the odds by 3.02. 
The effect of + lSD on a .50 prob ability is to raise this probability to .57. 

The estimated effect of Gender is .29 on the logit scale, with a SE of 
.20, so that the effect is not statistically significant. Males are not signif­
icantly more inclined to verbal aggression than females, but the odds for 
male students are nevertheless 1.34 times larger than the odds for female 
students. The effect of being male on a prob ability of .50 is to raise this 
prob ability to .57. 

Since Trait Anger and Gender explain part of the original person vari­
ance, the residual person variance may be expected to be lower than the 
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one estimated with the Rasch model. The estimated value of the person 
variance is 1.84, with a SE of .19, so that we must conelude that the in­
dividual differences that are not explained by Trait Anger and Gender are 
still highly statistically significant (p < .001). We note that the person 
variance is smaller than it was for the Rasch model. 

In comparison with the residual person variance, the variance that is 
explained by Trait Anger is rather smalI: the variance of Trait Anger mul­
tiplied by the squared effect of Trait Anger is (4.852 X .0572 =) .08, which is 
4% when added to the residual person variance. This percentage represents 
a correlation of .20 between Trait Anger and the verbal aggression propen­
sity as measured in a small set of specific situations. This low correlation is 
not surprising since typically situational behavior is not correlated higher 
than approximately .20 to .30 with trait measures (MischeI, 1968). The 
variance explained by Gender is even much smaller: the variance of Gender 
multiplied with the squared effect of Gender is (.422 x .292 =).02, which 
is not significant. Thus, in terms of effect size, the effect of Trait Anger is 
small to moderate and the effect of Gender is small to vanishing. 

Item parameters 

The estimated item parameters vary from -.57 to +4.16. To interpret these 
values one needs to know the actual mean of the person effects. This mean 
is the result of adding three terms: (1) the mean ofthe normal distribution 
of c (which is zero), (2) the average Trait Anger score (20.00) times the 
Trait Anger effect (.057), and (3) the average of Gender (the proportion of 
males: .23) times the effect of Gender (.29). The sum of these three terms 
is 1.20. When this reference value of 1.20 is subtracted from the original 
range (-.57 to +4.16), the result is -1.77 to +2.96, which is very elose to 
the range obtained with the estimates from the Rasch model. This short 
discussion demonstrates how the parameter values are identified only up 
to an additive constant. 

2.5 An item explanatory model: the LLTM 

2.5.1 Formulation of the model 

In the third model, the linear logistic test model (LLTM), item properties 
are used to explain the differences between items in terms of the effect they 
have on 'f}pi, and therefore on 7r pi. The model differs from the Rasch model 
in that the contribution of item i is reduced to the contribution of the item 
properties and the values they have for item i (see also Table 2.2): 

K 

'f}pi = ()p - L ßkXik, 

k=O 

(2.9) 
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in which X ik is the value of item i on item property k (k = 0, ... , K), and 
ßk is the regression weight of item property k. Comparing Equation 2.9 
with the corresponding equation for the Rasch model (see Equation 2.2), 
one can see that the item parameter ßi is replaced with a linear function: 

K 

ß'i = L ßkXik. 
k=O 

(2.10) 

Note that in general ß'i will not equal ßi as the prediction will not be 
perfect. 

Because the mean of the person distribution is fixed to zero, a property 
with a value of 1 for all items is needed (a constant predictor) to act as the 
intercept in Equation 2.10. Hence, we need an item predictor for k = 0, with 
X iO = 1 for all values of i, so that ßo is the item intercept. An alternative 
is to estimate the mean of the Bp , and to omit the contribution of the 
constant predictor, so that in Equations 2.9 and 2.10 k would run from 1 
to K. These remarks apply also to the fourth model; see Section 2.6.l. 

The model in Equation 2.9 is called the 'linear logistic test model' (LLTM; 
Fischer, 1973) because the model is based on a logit link and on a linear 
combination of item properties in the linear component, and because it was 
first used for test data. Instead of estimating individual item effects, the 
effects of item properties are estimated. The term 'logistic' in the label of 
the model does not mean that the principle of a linear combination of item 
properties cannot be used for normal-ogive models. Substituting a pro bit 
link instead of a logit link is all that is needed to obtain the normal-ogive 
equivalent of the LLTM. 

The LLTM also allows for interactions between the item properties. If one 
is interested in the interaction between two item properties, their product 
can be added as an additional item property. 

Graphical representation 

A graphical representation of the LLTM is given in Figure 2.7. 
The difference between Figure 2.5 for the Rasch model and Figure 2.7 

for the LLTM is that the contribution of each item is explained through 
the item properties (the Xs) and their fixed effects (the ßs from 1 to K, 
and a constant ßo, the effect of the constant item predictor). The constant 
predictor is represented twice, as X iO and Zpo, because it is also used twice: 
for the fixed LLTM intercept (ßo) and for the random intercept (Bp ). 

Comments and literature 

Note that there is no error term in Equations 2.9 and 2.10 and hence, the 
prediction is assumed to be perfect. The model implies that the item effects 
can be perfectly explained from the item properties, that ßi from the Rasch 
model equals ß~ from Equation 2.10. This is a strong assumption, and it 
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(~~)~ 
(~~~ 

FIGURE 2.7. Graphical representation of the LLTM. 

makes the model highly restrictive. But this constraint may be relaxed in 
more complex models. In Chapter 6, models are presented with an error 
component added to Equations 2.9 and 2.10. 

The LLTM was developed by Fischer (1973, 1983). For an early appli­
cation of regressing the item parameters on item properties, although the 
latter were not incorporated in the model, see Scheiblechner (1972). Fis­
cher (1977) has presented a LLTM for multidimensional items, and later 
he described a general framework for designs with multidimensional items 
and different points in time, possibly with different subsets of items for dif­
ferent occasions (Fischer, 1989). For an overview of LLTM developments, 
see Fischer (1995). 

2.5.2 Application oi the LLTM 

Three item properties are used in the LLTM for the verbal aggression data: 
Behavior Mode, Situation Type, and Behavior Type. The three properties 
are coded into four X-variables (k = 1 to 4), complemented with the con­
stant item predictor (k = 0). We chose the co ding given in Figure 2.8. 

Behavior Mode 
predictor 1 

Situation Type 
predictor 2 

Behavior Type 
predictor 3 
predictor 4 

Do = 1 

Other-to-blame = 1 

Curse, Scold = 1/2 
Curse, Shout = 1/2 

Want = 0 

Self-to-blame = 0 

Shout = -1 
Scold = -1 

FIGURE 2.8. Co ding scheme for the LLTM 
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Note that the coding scheme as presented in Figure 2.8 differs from the 
one used for the simple linear regressions in Chapter 1, since, except for 
the Behavior Type, dummy coding is used. This illustrates how alternative 
coding schemes are possible. For the Behavior Type, contrast coding with 
centering on the overall mean is used as in Chapter 1, because we are still 
interested in the effect of the behavioral features (Blaming, Expressing) in 
comparison with the mean. However, we will also report the estimates using 
dummy coded factors for Behavior Type: one for Curse versus the other 
two behaviors, and one for Scold versus the other two behaviors (Shout is 
the reference level). The Behavior Mode is coded as a dummy variable: Do 
is coded as 1, and Want as o. Also the Situation Type is coded as a dummy 
variable, with Other-to-blame coded as 1, and Self-to-blame as O. In order 
to include an intercept, an item predictor is added with a value of one for 
all items (k = 0). 

The goodness-of-fit values of the LLTM are given in Table 2.3. The values 
are clearly inferior to those of the previous models. The LR test comparing 
the LLTM to the Rasch model is significant X2 (19) = 159.6 (p < .001), 
meaning that the goodness of fit of the LLTM is lower. The reason is that 
the 24 parameters for item effects are now reduced to only five, correspond­
ing to the five item predictors (including the constant predictor). But see 
our discussion below regardingthe estimates, where we conclude that the 
item properties have a very high explanatory value. 'I'his illustrates how 
choosing to use an explanatory model can be at the cost of a statistically 
significant lower goodness of fit even when the explanation is rat her suc­
cessful. See Chapter 6 for a solution to this by defining the item parameters 
as a random variable. As for the other models, we first discuss the results 
regarding the person variance. 

Person variance 

The estimated person variance is 1.86, with a SE of .20 and thus significant 
(p < .001). Note that the variance is smaller than for the Rasch model 
(where it was 1.98). This illustrates how the estimates for the person mode 
are slightly affected by a different approach for the item mode (explanatory 
instead of descriptive). This phenomenon can be explained as a scaling 
effect (Snijders & Bosker, 1999, pp. 227-228), which was also discussed in 
Chapter 1. The effect is due to the less than perfect explanation of the item 
parameters on the basis of the item properties (see next paragraph). 

Item property effects 

We no longer have estimates of the individual item parameters but instead 
we have estimates of the effects of the item properties. To find out the 
effect per item, the sum of the effects of the corresponding item property 
variables must be made, as will be illustrated below. 

The estimated effect 0/ the Behavior Mode is .67, with a SE of .06, so 
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that this effect is also highly statistically signifieant (p < .001) - when 
going from wanting to doing, the odds are redueed to about half of their 
value for wanting. The odds deerease with (are divided by) a factor of about 
two, more preeisely 1.96. If the probability of wanting were .50, then the 
reduction would yield a prob ability of .34. 

The estimated effect of the Situation Type is -1.03, with a SE of .06, 
so that the effeet is highly statistieally signifieant (p < .001). The effect 
implies that when others are to blame, verbal aggression is more eommon 
than when oneself is to blame. When others are to blame, the odds inerease 
by a faetor 2.80. The effeet on a prob ability of .50 would be to raise it to 
.74. 

Reeall that for the effect of the Behavior Type two predictors were used. 
The effeet of the first (eurse and Seold vs Shout) is -1.36, with aSE of 
.05; and the effect ofthe seeond (eurse and Shout vs Seold) is -.70, with a 
SE of .05. Both effeets are highly statistieally signifieant (p< .001). From 
these effeets it may be eoneluded that for the situations under investigation 
the blaming aspeet of a behavior has a larger effeet on its oeeurrenee than 
the expression aspeet. When both effects are eombined, the values for the 
three behaviors are: -1.36/2-.70/2 = -1.03 for eurse, -1.36/2+.70 = .02 
for Seold, and 1.36 - .70/2 = 1.01 for Shout. Using odds to deseribe the 
effeet size, the odds of eursing are 2.86 times higher than those of seolding, 
and the odds of seolding are in turn 2.69 times higher than those of shout­
ing. The odds roughly inerease with a factor of almost three when going 
from shouting to seolding, and when going from seolding to eursing. If the 
prob ability of seolding were .50 in a given situation, then the eorresponding 
probabilities of eursing and shouting would be .74, and .27, respeetively. 
Equivalent results are obtained with the dummy eoding. The effeets are 
-2.04 (SE is .07) for eurse, and -.99 (SE is .07) for Seold. FinaIly, the 
estimated effeet of the constant predictor is .31, the estimation of the fixed 
intereept using the eoding seheme of Figure 2.8. Given the mixed eoding 
(contrast eoding and dummy eoding) this effect has no easy interpretation. 

In order to reeonstruet the individual item parameters from the LLTM, 
one has to add up the effects that eorrespond to the four item property 
variables and the eonstant. For example, the reeonstructed parameter for 
"A bus fails to stop for me. I would want to seold" is .02 (Seold) + .00 
(Want is the referenee level) -1.03 (Other-to-blame) +.31 (eonstant) = 
-.70. The parameter as estimated on the basis ofthe Raseh model is -.57. 
The eorrelation between the item parameters as estimated with the Raseh 
model and the parameters as reeonstructed from the LLTM is .94. Thus, 
although the LLTM fits signifieantly worse in a statistical sense, it does 
very weIl in explaining the item parameters, so that we may say it has a 
large effeet size in this respect. 
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2.6 A doubly explanatory model: the latent 
regression LLTM 

2.6.1 Formulation of the model 

Finally, one can carry out both of the previous extensions by combining 
Equations 2.7 and 2.10 into the equation for the Rasch model (Equation 
2.2), assuming that ß/ is used in place of ßi. This yields the latent regression 
LLTM, a model that is explanatory for both the person mode and the item 
mode (see also Table 2.2): 

J K 

7}pi = L'!9j Zpj +cp - LßkXik. (2.11) 
j=l k=O 

As for the previous models, the model of Equation 2.11 has two parts: a 
person contribution and an item contribution. The person contribution is 
explained in terms of person properties and has an error term, while the 
item contribution is explained in terms of item properties and does not 
include an error term. This asymmetrie construction is not a necessity, as 
will be seen in Chapter 6. 

The model in Equation 2.11 is a GLMM with both person predictors and 
item predietors, each having a fixed effect, and a random intercept, which is 
the error term of the person contribution. The previous three models in this 
chapter can be obtained from Equation 2.11. Two kinds of modifications 
are needed to obtain the other three models: (a) to obtain the LLTM, the 
Zs are omitted, so that cp can be expressed as ()p; and (b) to obtain the 
latent regression Rasch model, the X s are just the item indieators (Xik = 1 
if i = k, X ik = 0 otherwise, and K = 1), so that for k = i it holds that 
ßkXik = ßi, and for k =I- i it holds that ßkXik = O. For the Rasch model 
both modifications are needed. Alternatively, these three models can be 
seen as being built up by adding complications to the basic building block 
of the Rasch model. 

Graphical representation 

Figure 2.9 gives a graphie al representation of the latent regression LLTM. 
The difference with Figure 2.5 (the Rasch model) is that in Figure 2.9 for 
the latent regression LLTM both the contribution of each item and of each 
person is explained through properties, item properties with a fixed effect 
ßk, and person properties with a fixed effect '!9p, respectively. For the items, 
the effect of the constant predictor is ßo, while for the persons the effect of 
the constant predictor is a random effect, which appears as an error term 
cp. This is why both X iO and Zpo are included in the representation. Note 
that the circles containing ß/ and ()p are not needed. A direct connection 
of the arrows from the Xs and the Zs to 7}pi is a more parsimonious but 
perhaps less interpretable representation. 
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FIGURE 2.9. Graphical representation of the latent regression LLTM. 

Literature 

The latent regression LLTM is simply a combination of the latent regression 
idea with the LLTM, and this is why we call this combined model here 
the 'latent regression LLTM'. It is described theoretically in Zwinderman 
(1997), and Adams, Wilson and Wu (1997). 

2.6.2 Application of the latent regression LLTM 

The fit indices for the latent regression LLTM are given in Table 2.3. The 
goodness of fit is slightly better than for the LLTM, for the same reasons 
that the latent regression Rasch model had a slightly better goodness of fit 
than the Rasch model. The LR test comparing the latent regression LLTM 
to the LLTM is significant (X2 (2) = 12.6, p < .001). We will not note the 
specific effect estimates here, as the estimated person property effects are 
about the same as those obtained with the latent regression Rasch model, 
and also the estimated item property effects are about the same as those 
obtained with the LLTM. 

It is noteworthy that the residual person variance, after the estimated 
effect of Trait Anger and Gender is accounted for, amounts to 1.73 in 
the latent regression LLTM, while it was 1.84 in the corresponding latent 
regression Rasch model. Again, the more flexible the model is for the esti­
mation of the item effects, the larger the variance is of the (residual) person 
effects, as could be expected from the scaling effects discussed earlier. 
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2.7 Enlarging the perspective 

The four models we have presented are chosen to illustrate the contrast 
between descriptive and explanatory models. They are only an introductory 
selection. In order to cover the broad variety of item response models, we 
need an enlargement of the perspectives. In principle the extensions can 
relate to the three parts of a GLMM: the random component, the link 
function, and the linear component. 

Regarding the first two parts, the extension of the models to multi­
categorical data has consequences for the link function and the random 
component. We will not go as far as extending the models also to count 
data, however, which would require a logarithmic link and a Poisson dis­
tribution for the random component. Regarding the linear component, the 
extensions concern not only the type of predictors and the type of effects, 
but also the linear nature of the component, since some of the item re­
sponse models are not generalized linear mixed models but nonlinear mixed 
models. Examples of nonlinear mixed models are the two- and the three­
parameter logistic models (2PL and 3PL models), and the multi dimensional 
two-parameter models. Finally, the assumption of local independence will 
be relaxed. 

For all these models, the parameters can either be descriptive parameters 
or explanatory parameters. Explanatory parameters are effects of proper­
ties, or in other words, of external variables. Descriptive parameters are 
either random effects or fixed effects of predictors that are not properties 
but indicators. This distinction, which is at the basis of the presentation of 
four models in this chapter, will be extrapolated in the following chapters. 

Chapter 3 discusses extensions to multicategorical data. Other extensions 
are presented from Part 11 on. Chapter 4 describes more thoroughly than 
the previous chapters the statistical background for this volume. 

2.8 Software 

2.8.1 Rasch model (verbal aggression data) 

The basic options that were used are described in Section 2.3.2. In later 
chapters, the basic options are reported in the sections on software. 

Code 

PROC NLMIXED data=aggression_dich method=gauss 
technique=newrap noad qpoints=20; 
PARMS bl-b24=1 sdO=l; 
beta= bl*xl+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+bl0*xl0+bll*xll+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
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+b21*x21+b22*x22+b23*x23+b24*x24j 
ex=exp(theta-beta)j 
p=ex/(l+ex)j 

MODEL y rv binary(p); 
RANDOM theta rv normal(O,sdO**2) subject=personj 

ESTIMATE 'sdO**2' sdO**2j 
RUNj 

Comments 

1. The data set is called aggression_dich (see website mentioned in the 
Preface). The data matrix contains the data in one long string and the val­
ues of the design factors corresponding with each observation (see Chapter 
12). 

2. In the PARMS statement, the parameters are introduced together with 
their initial values. 

3. Next, the formula for the probability is built up from two ingredients: 
beta and theta. The beta part is based on the 24 item indicators (xl to 
x24) and their weights (bi to b24). The theta part is just a single term ((}p, 
but see the software for the next application). With the basic ingredients 
of theta and beta, the formula for the probability is constructed. Instead 
of building up the formula in steps, one can as weIl give the formula in one 
step. 

4. In the MODEL statement, it is specified that the observations follow a 
Bernoulli distribution (binary) with parameter p (7rp i). 

5. In the RANDOM statement the distribution of theta is specified, over per­
sons (subject=person), with mean zero and a variance that is the squared 
value of sdO (0-0). The value that is estimated is therefore the SD and not 
the variance. 

6. This is why an ESTIMATE statement is added, so that also the variance 
is estimated, with label 'sdO**2' (the label may differ from the symbol in 
the software; e.g., vartheta would be another label). 

7. The code for the LLTM will not be shown, but is analogous: xl to x24 
is replaced with xl to x5 (the coded design factors) with their weights. 

2.8.2 Latent regression Rasch model (verbal aggression data) 

The options are the same as for the Rasch model. 
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Code 

PROC NLMIXED data=aggression_dich method=gauss 
technique=newrap noad qpoints=20; 
PARMS b1-b24=1 sdO=1 g1-g2=O; 
theta=eps + g1*anger + g2*male; 
beta= b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+b10*x10+b11*x11+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
+b21*x21+b22*x22+b23*x23+b24*x24; 
ex=exp(theta-beta); 
p=ex/ (1 +ex) ; 

MODEL Y '" binary(p); 
RANDOM eps '" normal(O,sdO**2) subject=person; 
ESTIMATE 'sdO**2' sdO**2; 
RUN; 

Comments 

The two differences with the estimation of the Rasch model are: 
1. theta is now defined as a sum of the Gender effect, the Trait Anger effect, 
and a random term eps, in correspondence with how theta is defined in 
the latent regression Rasch model. The person properties are anger and 
male (the Zs), and their weights g1 and g2 (the '!9s). 
2. It is now the distribution of eps that is defined, instead of the distribution 
of theta. 

2.9 Exercises 

1. Why is no intercept (ßo) used in the Rasch model? 

2. Redraw Figure 2.5 for a model with fixed person effects and random 
item effects. 

3. How should one interpret the intercept in the LLTM? Suppose the in­
tercept would be fixed to zero, while the mean of the B-distribution is free. 
What would be the consequence of this? How do ßo and the mean of B 
relate to one another? 

4. Suppose that for Do vs Want not a dummy co ding would have been 
used but contrast co ding (Do = 1, Want = -1). What would then have 
been the weight of this predictor? 

5. Bp can be removed from Figure 2.6. How would the new figure look 



2. Descriptive and explanatory item response models 71 

like then? Would cp be the random intercept? If yes, how can an error 
term be the measure of a latent trait, and how would the trait be defined? 
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Chapter 3 

Models for polytomous data 

Francis Tuer linckx 
Wen-Chung Wang 

3.1 Introduction 

In the first two chapters of this volume, models for binary or dichotomous 
variables have been discussed. However, in a wide range of psychological 
and sociological applications it is very common to have data that are poly­
tomous or multicategorical. For instance, the response scale in the verbal 
aggression data set (see Chapters 1 and 2) originally consisted of three cat­
egories ("yes," "perhaps," "no"), but it was dichotomized to illustrate the 
application of models for binary data. In aptitude testing, the response is 
often classified into one of several categories (e.g., wrong, partially correct, 
fully correct). In attitude research, frequent use is made of rating scales 
with more than two categories (e.g., "stronglyagree," "agree," "disagree," 
"strongly disagree"). Other examples are multiple-choice items, for which 
each separate choice option represents another category. In a typical dis­
crete choice experiment, the subject is faced with a choice between several 
options (e.g., several brands of a product in a marketing study). 

Each of the previous examples is characterized by the fact that the out­
come variable has more than two response categories. Analyzing such data 
requires the use of a model that can adequately handle the additional in­
formation that is supplied by the greater number of response categories. 
Dichotomizing the scale often leads to a loss of information about the re­
sponse process and less precise inferences about the scientific quest ion of 
interest. 

An important feature of multicategorical data, which was not relevant 
for binary items, is whether the response categories are ordered or not. If 
the categories are not ordered, we say they are nominal; in the other case, 
the categories are called ordinal. If the categories are ordinal, the model 
should be one that takes this information into account. 

Each item has Mi possible response categories (m = 0, ... , Mi - 1), and 
the response of the person falls into one of those categories. A different kind 
of analysis is needed if the person can choose simultaneously more than one 
category but we will not consider such data here (see Agresti & Liu, 2001). 
In this general setup the number of response categories can change over 
items. For a person p and item i with Mi (ordered or unordered) response 
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categories, there is a set of Mi probabilities {7r pirn, m = 0, ... , Mi - 1} 
describing the chance for person p to respond on item i in each category 
and the Mi probabilities sum to one. 

Historically, one of the first mixed models for polytomous data was pro­
posed in an educational measurement context by Rasch (1961; see also 
Andersen, 1995). Rasch's model was the predecessor of a whole family 
of educational measurement models for polytomous data (Andrich, 1978, 
1982; Fischer & Parzer, 1991; Fischer & Ponocny, 1994; Glas & Verhelst, 
1989; Masters, 1982). Arestricted version ofBock's nominal response model 
(without discrimination parameters; Bock, 1972) can also be seen as a mem­
ber of this Rasch model family. A common feature of these models is that 
they are based on baseline-category or adjacent-categories logits (see be­
low). The random coefficients multinomial logit model (Adams & Wilson, 
1996; Adams, Wilson, & Wang, 1997) encompasses many members of the 
Rasch model family. A different type of mixed model for polytomous data 
is Samejima's graded response model (Samejima, 1969), based on cumu­
lative logits. In econometrics, a mixed-effects version of the multinomial 
logit model for discrete (unordered) choice data (Luce, 1959; McFadden, 
1974) was introduced in the early 1980s (Boyd & Mellman, 1980; Cardell & 
Dunbar, 1980). Surprisingly, the intensive study of mixed models for poly­
tomous data in statistics began relatively late (Ezzet & Whitehead, 1991; 
Harville & Mee, 1984; Hedeker & Gibbons, 1994; Jansen, 1990; McCullagh 
& NeIder, 1989; for a review, see Agresti, 1999). Polytomous data can also 
be analyzed from a structural equations model perspective (Bartholomew, 
Steele, Moustaki, & Galbraith, 2002) but this approach is more related to 
traditional factor analysis models and therefore it will not be covered here. 

We will first introduce a general model, called the multivariate general­
ized linear mixed model, from which specific models for polytomous data 
will be derived. Our treatment of these models is inspired by the approach 
of Fahrmeir and Tutz (2001). Some of the models will be discussed more 
in detail, including applications to the verbal aggression data. 

3.2 The multivariate generalized linear mixed 
model 

When a sample of persons respond to a set of polytomous items, two kinds 
of correlated multivariate data result. First, and as in the other chapters, 
the responses to the different polytomous items are dependent as a con­
sequence of the clustered structure of the data (i.e., items nested within 
persons). Second, the response to a single polytomous item in itself can be 
seen as a multivariate dependent response. Although counterintuitive at 
first sight, this fact is essential to cast models for polytomous data in the 
GLMM framework. 
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We will now discuss an extension of the previously presented models in 
order to deal with polytomous data. The extension will be discussed first for 
the GLM (without a random effect) and, in a second step, for the GLMM 
(with a random effect). 

3.2.1 Data 

If the response of person p to item i falls in category m, then Y pi = m 
(m = 0,1, ... , Mi - 1). Clearly, Mi = 2 refers to the binary case. However, 
a fundamental difference between binary and polytomous data is that the 
latter is actually a multivariate or vector-valued random variable while the 
former is univariate. To see this, one can recode the randorn variable Ypi 

into a random vector consisting of zeros and ones, denoted as C pi with 
length Mi - 1 (the length is one less than the number of categories). The 
components of a realization Cpi of the random vector C pi are defined as 
follows: 

if Ypi = m, 
otherwise. 

m = 1, ... ,Mi - 1, 
(3.1) 

This response vector is a dummy coded or indicator version of the poly­
tomous outcome variable. For simplicity, we discard the first category ° 
because this leads to the simplest formulation of subsequent models, but, 
in principle, any other category could be chosen as the reference category. 
Hence, the response to a polytomous item with Mi response categories is 
actually a vector of Mi - 1 distinct, nonredundant but correlated binary 
responses. In the binary case, the vector C pi has only one component and 
therefore the outcome variable is essentially univariate and does not differ 
from Ypi . 

As an illustration of the preceding, consider the data set on verbal ag­
gression. In the original study, 316 participants could choose one of three re­
sponse options ("no," "perhaps," and "yes") indicating whether they would 
react in the way described by the item in a given situation. Hence, in this 
data set Mi equals 3 for all 24 items (i = 1, ... ,24) and the responses "no," 
"perhaps," and "yes" are scored 0, 1, and 2, respectively. For example, if 
person p responds with "perhaps" to item i, then Ypi = 1. The vector of 
multivariate observations for each person-item combination, Cpi, has two 
components (Mi - 1 = 2). The possible data patterns are: (0,0) when re­
sponding "no," (1,0) when responding "perhaps," and (0,1) when respond­
ing "yes." For simplicity, we will continue to work with Mi = M = 3 in the 
explanation of the models. The adaptation of the material to the case of 
a greater number of categories or a varying number of categories over the 
items is straightforward. 
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3.2.2 Multivariate extension 0/ the generalized linear model 

Modeling data with a GLM requires an answer to three quest ions (see 
McCullagh & NeIder, 1989, and McCulloch & Searle, 2001). (1) What is the 
specific distribution of the data? (2) What transformation of the mean will 
be modeled linearly? (3) Which predictors will be included in the model? 
The first quest ion refers to the distributional or random component of 
the model, the second to the link function, and the third to the linear 
component. Because for polytomous data the response is multivariate, we 
extend the univariate GLM framework to the multivariate case so that 
multivariate generalized linear models are obtained (MGLM). The three 
parts of a MGLM (distribution, link function, linear predictor) will be 
treated successively. 

The distribution 

As mentioned, Cpi is a vector of length 2 with all components except one 
equal to zero, or all equal to zero. The appropriate distribution for this 
random vector is the multivariate Bernouilli distribution (a multinomial 
distribution with total count equal to one): 

(3.2) 

where 7rp im (m = 1,2) is the probability of responding in category m for 
person p on item i and 1 - 7r pil - 7r pi2 = 7r piO. The mean of the multivariate 
Bernouilli distribution is actually the vector of the marginal probabilities 
7r~i = (7rp il, 7rp i2). The variances of each of the univariate components are 
7rp im(1 - 7rp im) and the covariance between the two components equals 
-7rpil7rpi2 (see Fahrmeir & Tutz, 2001). The distribution of the MGLM 
belongs to the multivariate exponential family. 

The link function 

The vector-valued link function flink transforms the vector of means of the 
multivariate Bernouilli distribution 7r pi into a vector 7Jp i with the same 
dimension: 

(3.3) 

In general, if an item has M categories, the link function has M - 1 com­
ponents, equal to the number of nonredundant probabilities. 

In the polytomous case, there are a number of possible choices for link 
functions. All link functions discussed in this chapter are generalizations 
of the simple logit link that was introduced for binary data (except for 
Exercise 4 where the probit link is used). A detailed discussion of the link 
functions will be given in Section 3.4. For the moment, we confine ourselves 
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to a general account of these logit link functions. Each logit is defined as 
the logarithm of the ratio of the probability of responding in a subset Am of 
all categories, relative to the probability of responding in a disjoint subset 
Em of all categories. Formally, this is represented as follows: 

(3.4) 

where Am and E m are two disjoint subsets of the response categories (the 
union of Am and Em does not necessarily include all categories). In the 
binary case, there is only one way to form two disjoint subsets: Al for the 
category scored as 1 and BI for the category scored as 0 (the reference 
category). However, with polytomous data, there are in total four different 
ways, three of which will be discussed extensively in this chapter. 

A component of the link function is called the 'binary building block' 
of models for polytomous items (Thissen & Steinberg, 1986) and it can 
be interpreted as a measure of the attractiveness of subset Am relative to 
subset Em . The attractiveness will be modeled as a linear function of the 
predictors. The choice of a particular link function will determine the inter­
pretation of the regression coefficients of the linear predictor. The inverse 
of the link function is called the response function: fli;k ('I]pi) = 'Irpi. It will 
be used to express the probabilities as a function of the predictors. 

The linear predictor 

Since the vector-valued link function in Equation 3.3 has M - 1 = 2 com­
ponents, we need to equate it to a two-component vector of linear com­
binations of the predictors. Suppose we measured K predictor variables, 
denoted as Xl, ... , X k , •.• , X K ; the predictors can be item, person, or logit 
predictors, or any combination of them. An observed value for person p, 
item i and logit m on the kth variable is denoted as X pimk • The reason for 
using the term logit predictor, instead of the more intuitive label 'category 
predictor,' will be explained in Section 3.3. For the moment it suffices to say 
that a predictor that varies over the M -1 different logits (or nonredundant 
categories) can be included in the model. 

All measurements for the combination of person p and item i can be 
collected in a predictor matrix X pi with two rows (for the three categories) 
and K columns. Each column refers to one of the K variables. A particular 
row in this predictor matrix is denoted as X~im. The I matrices X pi can 
be stacked in the predictor matrix X p (for person p) and all P predictor 
matrices can be stacked in the super predictor matrix X. In Section 3.3 
the predictor matrix will be treated in more detail. 

The vector of regression coefficients is denoted by ß. Multiplying X pi 

with ß results in the vector of linear predictors 'l]pi. However, we will con­
sider the negative of the product of X pi with ß, because it is a tradition 
in the item response modeling literat ure and because the interpretation of 
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some of the parameters will be more straightforward after a random effect 
is added (see below): 

(3.5) 

We have made no explicit reference to the intercept in the model formula­
tion but it can be defined easily by including a column of ones X 0 in the 
predictor matrix X and assigning it a regression coefficient ßo (with the 
restriction that the columns should be linearly independent, see below). 

3.2.3 Multivariate extension of the generalized linear mixed 
model 

It is often the case that psychological data, and data from the social sciences 
in general, are the outcome of repeated observations on the same individu­
als. Such data are commonly characterized by response dependencies within 
the same person and by systematic differences between persons. One way 
to take into account within-subject correlation and between-subject hetero­
geneity is to add a person-specific random effect ()p to the linear predictor 
described in Equation 3.5. Adding a random effect to the MGLM results 
in a multi varia te generalized linear mixed model (MGLMM; Agresti, 2002; 
Hartzel, Agresti, & Caffo, 2001). Equation 3.5 now becomes: 

(3.6) 

where it is assumed that ()p <'V N(O, (J'~), for p = 1, ... , P. The vector 
Zpi = (Zpil' Zpi2)' is the predictor vector for the random effect. The P x I 
random-effect predictor vectors Z pi can be stacked below each other into a 
super random-effects predictor matrix Z. For almost all models discussed 
in this chapter Z will be a column vector of all ones (Z = Zo); therefore, 
these models are random-intercepts models because ()p is a person-specific 
deviation from the general intercept. Moreover, all MGLMMs in this chap­
ter are uni dimensional because only a single random effect is considered. 

The MGLMM in Equation 3.6 rests on the assumption of conditional 
independence or local stochastic independence (as it is often called in the 
item response modeling literature). This means that, conditionally upon the 
random effect ()p, the responses on the items are independent. Therefore, 
()p explains both the within-person dependence and the between-person 
heterogenei ty. 
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As has been emphasized in the first two chapters, there are two possible 
interpretations for the random intercept Op: a descriptive and an explana­
tory one. A descriptive perspective on the random effect is most common in 
a measurement context in which one wants to measure a latent dimension 
or propensity (e.g., an ability, or a personality trait), in order to locate 
a person p on the unobserved dimension. The corresponding location is 
denoted as Op. From the explanatory perspective, the researeher wants to 
explain the between-person variability a~ by including predictors into the 
model. Ideally, one wants the unexplained variability between persons to be 
as small as possible. To distinguish between the descriptive and explana­
tory approaches, we use two symbols for the random effect, depending on 
the situation: Op is used if no person covariates are included in the model 
(i.e., if no attempt is made to explain between-person heterogeneity), while 
cp is used if person covariates are included. Despite the differences, the two 
approaches are often complementary. 

3.3 Predictor matrices and model building 

In this section we will illustrate how different models for polytomous data 
can be built by specifying the predictor matrix. It will be shown that one 
of the great advantages of the MGLMM framework is the flexibility the 
researcher has to construct a model that is tailor-made for her or his pur­
poses. 

A MGLMM contains two predictor matrices: X and Z. We will use X 
for the fixed-effects predictor matrix and Z for the random-effects predictor 
matrix, in conformity with the general GLMM notation as used in Chapter 
4 because we start from the same general framework. This is in contrast 
with the notation in the other chapters on specific types of models, where 
X and Z denote the item predictor matrix and the person predictor ma­
trix, respectively. We will not use the graphical representations that were 
introduced in Chapters 1 and 2, because the multivariate nature of the 
models is a serious complication for this kind of representation. 

Predictor types 

Apart from the intercept, the predictors that are included in the predic­
tor matrix X can be classified into seven groups: item predictors, person 
predictors, logit predictors, and the four combinations of them. Person and 
item predictors are discussed in the previous chapters and person-by-item 
predictors will be discussed in detail in Chapter 7 of this volume. A logit 
predictor has the same value in all rows of the predictor matrix referring 
to the same component of the vector-valued link function. Interactions be­
tween a logit predictor and any of the other predictors are also possible. 
For instance, an item-by-Iogit predictor has constant values for all rows in 
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the predictor matrix referring to the same combination of an item with a 
specific component of the link function. Similar definitions apply to person­
by-logit and person-by-item-by-logit predictors. Examples of some of these 
predictors will foHow below. 

In this volume, we have chosen to use the term 'logit predictor' instead 
of 'category predictor.' The latter may seem more appealing but we believe 
that it may cause confusion. There are two main reasons to opt for the term 
'logit predictor.' First, although the data come with M categories, there are 
only M - 1 corresponding components of the link function in any model for 
polytomous data. Consequently, there are only M - 1 rows in the predictor 
matrix available for a person-item pair and thus the predictor values can 
only attain M - 1 different values for a person-item pair. In the models we 
discuss, the components of the link functions are aH some form of logits 
and therefore we have chosen this term. Second, each component of the 
link function (i.e., each logit) is modeled as a function of the predictors. 
As expressed in Equation 3.4, the logits determine the attractiveness of 
a subset of the categories Am compared to another subset B m. Different 
choices of these subsets are possible and they are not always directly linked 
with a single category. 

Item-by-logit interaction model 

The process of finding a suitable inferential model for data should start in 
the first place with a fairly general tentative model (Ramsey & Schafer, 
2001) that can be refined or expanded in the course of the analysis. With 
categorical data, a reasonable point of departure is to consider a model with 
dummy variables for items and logits and interactions between them. In 
analogy with the predictor matrix of a multiple regression model for fitting 
a fuH two-way analysis-of-variance (ANOVA) model, this is a model with 
main effects for the factors Item (with I levels) and Logit (with M -1 levels) 
and an interaction between them. There are several ways in which the 
predictor matrix can be set up to represent such a model, but the common 
approach in item response modeling is to define I (M -1) indicator variables 
that take the value 1 for aH rows that refer to a specific item-by-Iogit 
combination, and zero otherwise. For example, if a person p responds to 
three items having each three categories (and thus two logits), the predictor 
matrix X p would be as shown in Table 3.l. 

Hence each separate item-by-Iogit combination will have a corresponding 
parameter (to be discussed in the next session) and the predictor matrix 
contains item-by-Iogit predictors (because the values on these predictors are 
different for different items and logits within persons but not over persons). 
Without person predictors, a model with interactions between the item 
and logit indicators is the most general model one can fit. Because of its 
generality, we will caH this model the full item-by-logit model. If no more 
information about the items or categories is available, the fuH item-by-Iogit 
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TABLE 3.1. Predictor matrix for a fuH item-by-Iogit model for three items each 
having three categories (interactions between items and logits). 

Item Logit Xl X2 X3 X4 X5 X6 

1 LI 1 0 0 0 0 0 
1 L2 0 1 0 0 0 0 
2 LI 0 0 1 0 0 0 
2 L2 0 0 0 1 0 0 
3 LI 0 0 0 0 1 0 
3 L2 0 0 0 0 0 1 

interaction model is often the only reasonable model that can be fit. 
Item response models that allow for item-by-logit interactions are Bock's 

nominal response model (NRM or nominal model; Bock, 1972), Masters' 
partial credit model (PCM; Masters, 1982), and Samejima's graded re­
sponse model (GRM; Samejima, 1969). Note however that the original for­
mulations of the GRM contain item-specific discrimination parameters that 
have to be estimated from the data and that, in the NRM, these discrimi­
nation parameters may vary both over items and over logits within items. 
Discrimination parameters are considered in Chapter 8 and we will work 
in this chapter only with models without discrimination parameters. 

Itern and lagit rnain effects 

The next step of the inferential process will often consist of simplifying 
the full item-by-logit model, if possible. For example, if the same response 
options are used for all items (as in the verbal aggression data set), it makes 
sense to assess the fit of a model with only item and logit main effects (the 
item and logit main-effects model). Item main-effects parameters determine 
the generallocation of the items on the latent variable continuum Bp , while 
logit parameters determine the position of the different categories relative 
to the item location. The main-effects predictor matrix X p for person p can 
be constructed by including litern indicators and M - 2 logit indicators 
(an explanation for the latter count will be given shortly). An example for 
three items with each three categories is given in Table 3.2. 

The indicators Xl, X2 , and X3 refer to the item main effects and X4 

to the logit main effect; hence the latter is a logit predictor because its 
value changes over logits within person-item pairs but not over persons and 
items. At first sight, the predictor matrix for the full item-by-logit model 
in Table 3.1 and for the item and logit main-effects model in Table 3.2 
seem unrelated but that is not the case. The main-effects model predictor 
matrix can be derived from the full item-by-logit model predictor matrix 
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TABLE 3.2. Predictor matrix for an item and logit main-effects model for three 
items each having three categories (no interactions between items and logits). 

Item Logit Xl X2 X3 X4 

1 LI 1 0 0 0 
1 L 2 1 0 0 1 
2 LI 0 1 0 0 
2 L 2 0 1 0 1 
3 LI 0 0 1 0 
3 L 2 0 0 1 1 

by a simple reparametrization of the latter. Thus, the main-effects model 
is nested within the full item-by-logit model. Therefore, their relative fit 
can be compared with a likelihood-ratio (LR) test. The main-effects model 
is referred to in the item response modeling literat ure as the rating scale 
model (RSM; Andrich, 1978, 1982) when the adjacent-categories logit link 
is used (see below). However, with other link functions, the same principle 
can be applied. 

In the main-effects predictor matrix, there are as many item location 
parameters as items but there is only one logit main-effects parameter (de­
spite the fact that there are two logits). The reason is that adding a dummy 
variable that corresponds to the second logit would render a predictor ma­
trix that is not oi full rank. For RSMs, a different identification constraint 
is traditionally used. For instance, Andrich (1978) formulated the model in 
such a way that each item, except the first, has aseparate location parame­
ter and there are M - 1 logit-specific parameters (the location of the first 
item is therefore set to zero). The total number of parameters in both ver­
sions of the model is the same and they will fit equally well. Furthermore, 
we have used for all predictors a dummy coding scheme because that was 
most natural, but other coding schemes may be more appropriate in other 
situations. 

Including properties of items and categories 

In a subsequent step in the analysis, other item and logit predictors than 
mere indicators of the different items and logits can be considered. These 
lead to a more parsimonious inferential model with a greater explanatory 
power. Both item and logit properties can be used as predictors. The use of 
item properties is illustrated in the previous chapters. In a similar way one 
can include logit properties in the predictor matrix. For example, consider a 
discrete choice study where a participant has to choose repeatedly between 
three transportation mo des (bicycle, train, and car). Then their prices are 
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included in the model as a predictor. We will see that the appropriate link 
function (the baseline-category logit link) for such data is one where each 
component of the function indicates the attractiveness of a single category 
(train or car) relative to the reference category (e.g., bicycle). Therefore, 
only the relative price of a train or car trip compared to the price of a 
bicycle trip is relevant in the model. In practice one subtracts the price of 
a bicycle trip from the price of a train trip or car trip. Finally, it is also 
possible to include item-by-Iogit predictors, or logit-specific item predictors. 

Person predictors 

The inclusion of person predictors in the model is analogous to what has 
been described in Chapter 2. They are easily inserted as extra columns in 
the predictor matrix. However, an additional extension with polytomous 
data is possible by constructing a person-by-Iogit predictor. In that case 
the person predictor has a separate regression coefficient for each logit. As 
a caveat, we note that including person-by-Iogit predictors is not always 
reasonable or free of interpretational difficulties for ordinal data, as we will 
show in Section 3.5. 

3.4 Specifying the link function 

The choice of the link function determines the specific type of model and it 
has important consequences for the interpretation of the results. For binary 
data, there was only one possible logit link function, but for polytomous 
data, one has the choice between several generalized logit functions. Each 
link function defines in a different way how the categories are classified into 
the two subsets Am and B m to form the mth logit (see Equation 3.4). Three 
common logits for polytomous data are discussed here: (1) the adjacent­
categories logits, (2) the cumulative logits, and (3) the baseline-category 
logits. The first two link functions are for ordinal data, the last one is 
mainly used for nominal data. All three generalized logits simplify to the 
regular univariate logit if the data have only two categories. 

There are two ways of introducing the different link functions. The first 
focuses on the partitioning of the categories into subsets Am and B m and on 
the interpretation of the parameters. In a second approach, one assumes an 
unobserved behavioral process that takes place when a person responds to 
an item. It can then be shown that the unobserved behavioral process leads 
to the same model as a particular link function, but now the parameters 
have a meaningful interpretation in terms of the latent process. In our 
presentation, we will emphasize the first approach of the link functions, 
but we will mention the behavioral process in some cases because it can be 
illuminating. 

For illustrative purposes, we consider in the explanation of the link func-
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tions an item i with three categories (as in the verbal aggression data set) 
and the fixed-effects predictor matrix X corresponding to a full item-by­
logit model as in Table 3.1. Thus for item i, there are two logit-specific 
parameters ßil and ßi2. 

3.4.1 Adjacent-categories logits 

The mth adjacent-categories logit is the logit of responding in category m 
versus in category m - 1. Therefore, Am and Bm equal {m} and {m -
I}, respectively. The link function and structural component of the model 
become: 

log ( 7rp il ) = log (7rPi1 ) 
1 - 7rp il - 7rp i2 7rp iO 

ZpilBp - X~ilß = Bp - ßil, (3.7) 

log (7rPi2 ) = Zpi2 Bp - X~i2ß = Bp - ßi2· 7rp d 

Ftom Equation 3.7, it can be seen that the random-effects predictor matrix 
Z is a long vector of ones. 

In adjacent-categories logit models, the attractiveness of a higher cate­
gory relative to the adjacent lower one is modeled and it is precisely this 
paired adjacent-categories comparison that recognizes the ordering of the 
categories. Indeed, we see that if Bp increases, the attraction of the upper 
category in each adjacent-categories logit increases too. 

It follows from Equation 3.7, that category m and m - 1 are equally 
attractive if Bp = ßim. Thus ßim refers to the value of Bp where the proba­
bilities of responding in category m and m -1 are equal. For this reason the 
parameters in a full item-by-logit adjacent-categories logit model are called 
category crossing parameters or intersection parameters. These parameters 
indicate the points on the latent continuum for which the probabilities of 
responding in the two adjacent categories are equal. 

Inverting the link function gives an expression for the probabilities to 
respond in each of the categories: 

Pr(Ypi = 0) 

Pr(Ypi = 1) 

Pr(Ypi = 2) 

1 

1 + exp(Bp - ßid + exp(2Bp - ßil - ßi2) , 

exp(Bp - ßil) 

1 + exp(Bp - ßid + exp(2Bp - ßil - ßi2) , 

exp(2Bp - ßil - ßi2) 

(3.8) 

This model is the well-known partial credit model (PCM; Masters, 1982), 
which is an adjacent-categories logit model with interactions between items 
and logits. The model is applied in aptitude testing to allow for partially 
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crediting the correctness of the response, but it can be applied in many 
other areas too, such as attitude measurement. 
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FIGURE 3.1. (a) Category response functions, and (b) cumulative probabilities 
for the partial credit model. 

The PCM can be displayed graphically by plotting the probabilities of 
responding in each of the categories as a function of Bp ; these plots are 
called category response functions. This is shown in panel (a) of Figure 3.1 
for ßil = -1 and ßi2 = 1. One can see from the figure that the category 
response functions for categories 0 and 1 intersect at ßil = -1 and those 
for categories 1 and 2 intersect at ßi2 = 1. A figure such as Figure 3.1 is 
helpful for the interpretation. In the example of Figure 3.1 response 0 is 
the most likely one below ßil, response 1 between ßil and ßi2, and response 
2 above ßi2. Note that if ßi2 < ßil, then the interpretation changes, with 
response 1 not being the most likely at any point. This might be interpreted 
as indicating a problem with the middle response category, but that is only 
true if there is some theoretical basis to require that each category must be 
most likely at some value of Bp (and this is arare, and strong, theoretical 
assumption). 

As an alternative, Wu, Adams and Wilson (1998) considered the cumu­
lative probabilities Pr(Ypi ~ 1) and Pr(Ypi ~ 2), shown in panel (b) of 
Figure 3.1. The thresholds, Til and Ti2, are the points on the Bp continuum 
at which the cumulative probabilities equal .5. No matter what the order 
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of the ßs is, the cumulative prob ability curves will always be ordered along 
the ()p continuum and they do not intersect. Working with these cumulative 
probabilities avoids undue emphasis on the possibility that some response 
categories may not be the most likely (which becomes quite common as the 
number of categories increase). We must note however that because of the 
adjacent-category logits, the cumulative probabilities do not have a simple 
functional form that can be used to assess easily the effect of predictors. 

Because Equation 3.7 has the simple form of a Rasch model, it is tempt­
ing to consider the parameter ßim as the difficulty of the mth step in the 
solution process. However, as pointed out by Molenaar (1983; see also Thtz, 
1990), this is an erroneous interpretation, since the value of ßim in the step 
process interpretation is also determined by the difficulty of step m + l. 
By conditioning on being in category m or m - 1, one restricts the atten­
tion to responses that did not get into a higher category than m. What 
is true is that ßim governs the relative prob ability of a response in cate­
gory m or the category m - 1: Simple manipulation of Equation 3.8 gives 
1fpiI/1fpiO = exp(()p - ßir) and 1fpi2/1fpil = exp(()p - ßi2). Thus one can see 
ßim as expressing the relative difficulty of category m compared to cate­
gory m - 1 (Masters, 1982). A behavioral process interpretation for the 
adjacent-categories logit model will be given when the baseline-category 
logit model is discussed. 

As one starts to move away from the tentative full item-by-logit model, 
restrictions are placed on the category crossing parameters. A first step is 
that only main effects of items and logits are allowed in the model, so that 
the rating scale model (RSM; Andrich, 1978, 1982) is obtained with ßim 
being decomposed as folIows: 

ßil = ßi, 

ßi2 = ßi + A, (3.9) 

where ßi denotes the item location (also the position where the category 
response curves 0 and 1 cross), and A is the position of the intersection of 
categories 1 and 2 relative to ßi. Hence, the category crossings are at the 
same distance apart from each other for all items. 

In a next step, predictors with explanatory potential can be included 
in the model (if they are available). In such cases, the category crossing 
parameters ßim are regressed on a set of explanatory item predictors. This 
is the linear PCM or facets model (Fischer & Ponocny, 1994; Glas & Ver­
helst, 1989; Linacre, 1989). An even more restrictive model results when 
the item location parameters ßi from a RSM (Equation 3.9) are regressed 
on explanatory item predictors. This is the linear RSM (Fischer & Parzer, 
1991; Linacre, 1989). These models will be illustrated in the analysis of the 
verbal aggression data in Section 3.5. 
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3.4.2 Cumulative logits 

The mth cumulative logit is the logit of responding in category m or a 
higher category versus a lower category than category m. Thus Am and B m 
equal {m, ... ,M -I} and {l, ... ,m -I}, respectively. For three categories, 
the link function becomes: 

log ( 1Tpil + 1Tpi2 ) = log (1TPi1 + 1TPi2 ) 
1 - 1T pi 1 - 1T pi2 1T piO 

ZpilBp - X~ilß = Bp - ßil, 

(3.10) 

Hence, each cumulative logit contains the ratio of two cumulative probabil­
ities: Pr(Ypi ~ m)/Pr(Ypi < m). Thus, in models based on the cumulative 
logit, one models the tendency for person p to respond to item i in cate­
gory m or higher rat her than in a lower category as a linear combination 
of item-by-logit indicators and the person-specific random effect Bp . If Bp 

increases, the prob ability of responding in a higher category increases also. 
In the item response modeling literature, models of this type have been 
called graded response models (GRM; Samejima, 1969). In the statistics 
literature, the fixed-effects versions of these models are known as propor­
tional odds models (McCullagh, 1980; the reason for this name becomes 
clear when we discuss the parameter interpretation in Section 3.5). As for 
the adjacent-categories logits, we assurne that the random-effects predictor 
matrix contains only ones. 

From Equation 3.10, one can derive that the probability of responding 
in category m or higher equals: 

Pr(Ypi ~ 1) 

Pr(Ypi ~ 2) 

exp(Bp - ßid 

1 + exp(Bp - ßil) , 

exp(Bp - ßi2) 

1 + exp(Bp - ßi2)· 
(3.11) 

Thus, the cumulative probability of responding in category m or higher has 
the same structural form as the Rasch model. The category probabilities 
Pr(Ypi = m) can be derived from these cumulative probabilities as follows: 

Pr(Ypi = 0) 

Pr(Ypi = 1) 

Pr(Ypi = 2) 

1 - Pr(Ypi ~ 1), 

Pr(Ypi ~ 1) - Pr(Ypi ~ 2), 

Pr(Ypi ~ 2). 

(3.12) 

In order for Pr(Ypi = 1) not to be negative, an inequality constraint has 
to be imposed on the parameters: ßil < ßi2, for all i = 1, ... ,I. Note that 
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this weIl illustrates that, although we have used the same symbols for the 
parameters for the cumulative logit and adjacent-categories logit models, 
ßil and ßi2 are inherently different under the two formulations. 

(a) 
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-3 -2 o 2 3 

(b) 

FIGURE 3.2. (a) Cumulative probabilities for the graded response model, and 
(b) category response functions. 

In panel (a) of Figure 3.2, we show the cumulative probabilities for the 
GRM with ßil = -1 and ßi2 = 1. Panel (b) of Figure 3.2 contains the 
category response functions for the GRM. Although we have chosen sim­
ilar parameter values as for the graphical representation of the PCM (see 
Figure 3.1), the two parameter sets cannot be compared because the two 
models are not related. However, it can be seen that the trace lines in 
Figure 3.2 are very similar to the corresponding trace lines in Figure 3.1 
despite the different nature of the models. An important dissimilarity with 
the PCM is that in the GRM the middle category is always dominant for 
a certain region of the Bp continuum because of the order restriction that 
is placed on the ßs while that does not have to be the case for the PCM. 

For the GRM, it is illuminating to derive the model from a behavioral 
process perspective, which go es back to Thurstone (1927). Suppose that 
each time a person p responds to an item i (with 3 categories), a new 
unobserved variable Vpi is elicited (see Chapter 1). The distribution of 

2 
Vpi is logistic with mean Bp and variance "'; . The logistic distribution is 
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bell-shaped, like the normal, but its tails are somewhat heavier and wider. 
In Figure 3.3 the unobserved logistic distributions for three persons are 
shown. In the full item-by-logit model, the two item-specific fixed-effects 
parameters, ßil and ßi2 act now as thresholds or cut points in generating 
the response of the person in the following way: 

Ypi = 0 {:=::? Vpi :s: ßil, 

Ypi = 1 {:=::? ßil < Vpi :s: ßi2, 

Ypi = 2 {:=::? Vpi > ßi2. 

To show how the probabilities in Equation 3.11 follow from this process, 
we derive Pr(Ypi = 2). First, we note that Opi = Vpi - Bp is a random 

2 

variable with a logistic distribution with mean 0 and variance 7r3 . The 
derivation then goes as follows: 

Pr(Ypi = 2) Pr(Vpi > ßi2) = Pr( Opi + Bp > ßi2) 

exp(ßi2 - Bp ) 
1 - Pr(Opi :s: ßi2 - Bp) = 1 - (ß B ) 

1 + exp i2 - p 

exp(Bp - ßi2) 

1 + exp(Bp - ßi2)' 

Thus we find the same probabilities as obtained from the cumulative logit 
link formulation. In this threshold approach, the inequality constraint on 
the GRM parameters, ßil < ßi2, has a meaningful interpretation because 
it requires that the second cut-off has to be placed on the right of the first 
cut-off. Note that the same model follows if one assurnes that the latent 
random variable Vpi has a logistic distribution with mean Bp - ßil while 
the thresholds are 0 and ßi2 = ßi2 - ßil. Just as for the peM, a rating 
scale version of the GRM may be constructed too: Bp - ßi is the mean 
of the underlying logistic distribution and the thresholds are located at 0 
and 'Y ('Y > 0) for all items. Again, one can incorporate into the model 
more meaningful and explanatory predictors (as illustrated in Section 3.5). 
We remark that the latent variable motivation is not a requirement to use 
or interpret the GRM; the cumulative logits are the crucial part of the 
model. However, the latent variable conceptualization may facilitate the 
model-building task in some cases. 

3.4.3 Baseline-category logits 

The logits discussed above take into account the ordering of the response 
categories. However, with nominal data, it is more appropriate to use a 
model based on the baseline-category logits. The mth baseline-category 
logit is the logit of responding in category m versus baseline category O. 
Thus, Am and Bm equal {m} and {O}, respectively. The baseline category 
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Vp, 

FIGURE 3.3. The elicited logistic distribution for three persons. 

is arbitrary but category 0 is often a reasonable choice. The link function 
is defined as: 

log C _ 1f :~i~ 1f PiJ = log ( :::~ ) 
Zpil ()p - ßib 

= log (1f pi2 ) 
1fp iO 

(3.13) 

The random-effects predictor matrix will be specified below to relate the 
baseline-category logit model to other models and to illustrate its use. 

Solving for the response probabilities gives: 

Pr(Ypi = 0) 

Pr(Ypi = 1) 

Pr(Ypi = 2) 

1 
1 + exp(Zpil()p - ßil) + exp(Zpi2()p - ßi2) , 

exp( Zpil ()p - ßil) 

1 + exp(Zpil()p - ßid + exp(Zpi2()p - ßi2) , 

exp(Zpi2()p - ßi2) 

(3.14) 

This model is a constrained version of the nominal response model in item 
response modeling (Bock, 1972); it is also known as the multinomial mixed 
logit model in econometrics (Train, 2003) or simply the baseline-category 
logit model (Agresti, 2002). 
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From the set of Equations 3.14 it can be derived that the PCM is a special 
case of the nominal model if the random-effects predictor matrix is specified 
as follows: Zpil = 1 and Zpi2 = 2. Moreover, the parameter ßi2 in Equa­
tion 3.14 is now the sum of the two category crossing parameters from the 
PCM. The relation between the PCM and the nominal model can also be 
shown by expressing the baseline-category logits in terms of the adjacent­
categories logits. The first logit under both schemes is already equal (com­
pare Equations 3.7 and 3.13) and for the second baseline-category logit the 
derivation is as follows: 

log (7f Pi2) = log (7f Pi!) + log (7f Pi2) . 
7f piO 7f pio 7f pil 

Alternative specifications of the random-effects predictor matrices can be 
constructed as in the ordered partition model of Wilson and Adams (1993) 
and the PCM for null categories (categories which no person has chosen; 
Wilson & Masters, 1993). 

The behavioral process interpretation that leads to the nominal model is 
a random utility maximization(RUM) process. In short, it means that each 
category has an associated utility and the category with the highest utility 
is chosen by the person. Technically, a so-called extreme-value distribution 
(we will not discuss this distribution in detail, see Train, 2003) is elicited 
for each category when a person responds to an item. The mean of the 
distribution for the reference category equals zero, but for the other two 
it is equal to the corresponding right-hand sides of Equation 3.13. These 
distributions represent the random utilities for the categories. A draw from 
each distribution is taken and the category with the maximum utility is 
chosen (the person acts as a rational utility maximizer). In a baseline­
category logit model, the systematic part of the category-specific utility 
distribution (the mean) is modeled as a function of the predictors. 

Because adjacent-categories logit models are a special case of baseline­
category logit models, a RUM perspective is also valid for adjacent-catego­
ries logit models. The main difference with the more general baseline­
category logit models is that the adjacent-categories logit model constrains 
the ordering of the extreme-value distributions in a special way. For a per­
son with very small value of (}p, the ordering of the three distributions 
(labeled by the corresponding categories) will be 2, 1, and O. This means 
that for such a person category 0 has the largest probability of being cho­
sen. For a person with a large positive value of (}p, the ordering will be the 
reverse (0, 1, 2), meaning that category 2 has the largest chance of being 
chosen. Such areversal of the orderings of the distribution is not necessarily 
true for the nominal model. 

Despite the fact that the baseline-category model as it is presented in 
this chapter is more general than the adjacent-categories logit model, its 
applicability is limited. The reason is that it is often difficult to specify 
apriori a random-effects predictor matrix (except for the case in which 
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the categories are clearly ordered and the PCM can be defined). For this 
reason, the baseline-category logit model is usually defined with an un­
known or latent random-effects predictor matrix for which the entries have 
to be estimated. These unknown values are called the discrimination pa­
rameters (see Chapter 8). In the most general case, it is assumed that the 
discrimination parameters may vary both within items (over logits) and 
over items. Such a model can then be compared to a more restricted one, 
for instance a PCM with an apriori determined random-effects predictor 
matrix. The test of the restricted model against the full one assesses the 
explicitly presumed ordering of the categories in the PCM. 

In this chapter we will restrict the focus to models without discrimi­
nation parameters and therefore we do not consider the general version 
baseline-category logit model further. Because the restricted version with­
out discriminations is not so useful, it will not be discussed either. 

3.5 Application of models for polytomous data 

In this section we apply the two models for ordered polytomous items to 
the verbal aggression data set. The main focus will be on the adjacent­
categories logit models but we will briefly outline some results using cumu­
lative logit models. Software code to estimate some of the presented models 
in SAS is given in Section 3.8. 

3.5.1 Adjacent-categories logit models 

As a first model we consider the PCM (Masters, 1982), which is a model 
with interactions between indicator predictors for items and logits. Conse­
quently, each item has two category crossing parameters. The deviance of 
the model, and its AIC and BIC values, can be found in Table 3.3 in the 
PCM row. The estimated standard deviation of the random-effects distri­
bution is .95 (SE = .05). We do not present the estimates for all category 
crossing parameters numerically but graphically. We could plot the cate­
gory response curves for each item as a function of ()p (see Figure 3.1). 
But for this application, we have chosen to display the data in a different 
way, as in Figure 3.4. First, we ordered the items according to the expected 
response they elicit in the population from lowest or 'easiest' (bottom of 
the figure ) to highest or 'most difficult' (top of the figure ).1 Then we use 
a different shade of gray to mark the regions in which a certain category 
is most likely: light gray für categüry 0, medium gray for category 1 and 

lThe expected response for a polytomous item can be computed as folIows: 
2:::=0 m !:"oo Pr(Ypi = m)q'>(OpIO, a~)dOp, where q'>(OpIO, a~) represents the normal 

probability density for Op with mean 0 and variance a~. 
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dark gray for category 2. Each item is represented by a separate bar and 
the item numbers can be found on the left side. At the right side, we list 
the item features (Behavior Mode, Situation Type, Behavior Type). The 
vertical solid lines indicate the mean of the random-effects distribution to­
gether with the intervals of +10"0 to -10"0 (containing about 68% of the 
population) and +20"0 to -20"0 (containing about 95% of the population). 
In Figure 3.4, most bars contain three shades of gray so that for those items 

21 c:II do seil shou! 

24 do seil shou! 

9 want seil shou! 

20 do seil scold 

18 do other shout 

12 want seil shou! 

8 want seil scold 

15 do other shout 

23 do seil seold 

19 do seil curse 

11 want seil sooId 

17 do o!her seold 

3 want ether shout 

6 want ether shout 

7 want seil eurse 

14 de ether sooId 

22 da setl curse 

2 want other $Cold 

5 wanl other scold 

10 want seil curse 

16 do other curse 

13 do other CurS8 

want other curse 
4 want other curse 

-2". -<>. 0 
" a 2ae 

FIGURE 3.4. Graphical presentation ofthe peM estimates for the items together 
with the item features (verbal aggression data). 

all three categories are the most likely ones at some point (an exception is 
item 18). Relating the item features with the item difficulties, we see that 
situations where oneself is to blame are the most difficult ones. There is 
also a tendency that shouting is associated with the most difficult items, 
scolding with the intermediate ones and cursing with the easier ones. For 
doing versus wanting, the results are less clear but in the first half of the 
items 8 out of 12 are about doing, which suggests it is more difficult than 
wanting. The effects of the item predictors 'vill be investigated in more 
detail below. 

Next, the PCM is extended with two person predictors which are re­
gressed on ()p: 

()p = ßCenderZp Cender + ßTrait AngerZp Trait Anger + ep, (3.15) 
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where Zp Trait Anger and Zp Gender stand for the Trait Anger score and Gen­
der of person p (Zp Gender = 0 for women, Zp Gender = 1 for men), respec­
tively. The quantity cp now plays the role of random effect. The software 
code to estimate this model can be found in Section 3.8.1. By including 
these two person predictors in the PCM, the estimated standard deviation 
for the random-effects distribution, slightly drops to .92 (SE = .05). (A 
model with an interaction between Trait Anger and Gender did not re­
sult in a significant improvement of the fit.) As can be seen in Table 3.3, 
the model with person predictors, the PCM(person) in Table 3.3, results 
in a lower AIC and BIC. Also a LR test comparing the first two models 
turns out to be significant (X2 (2) = 29,p < .001). The regression coeffi­
cients for Trait Anger and Gender are estimated at .06 (SE = .01) and .28 
(SE = .12), respectively. For both regressors, the coefficients differ signifi­
cantly from zero (p< .01 for Gender, and p < .001 for Trait Anger, using 
a Wald test). 

The interpretation of effects of the person predictors is based on the 
adjacent-categories odds. For instance, for Gender, we can conclude that, 
holding everything else constant, the odds of responding "perhaps" vs "no" 
(or the odds of responding "yes" vs "perhaps") are exp(.28) = 1.3 times 
larger for men than for women. Hence, men are a little bit more inclined 
to express high levels of verbal aggression than women. The 95% CI shows 
a wide range of plausible effect sizes: It ranges from a little more than 1.0 
to 1.6. The positive regression coefficient for Trait Anger indicates that 
higher Trait Anger is associated with higher levels of verbal aggression. 
More precisely, an increase of 1 SD in Trait Anger (SD = 4.85) multiplies 
the odds of responding "perhaps" rather than "no" (or "yes" rather than 
"perhaps") with exp(4.85 x .06) ~ 1.3 (the 95% CI ranges from 1.2 to 
1.4). A plot of the category crossing parameters looks similar as the one in 
Figure 3.4, except that the plot is shifted to the right when the verticallines 
remain in place. The explanation of this observation is left as an exercise. 

The regression coefficients estimated with the PCM can be compared 
with those obtained from estimating the latent regression Rasch model 
(see Chapter 2). The values of the estimated coefficients are almost ex­
actly equal to each other, but the corresponding standard errors are about 
60% larger with the dichotomized data. For instance, the effect of Gen­
der was not significant in the dichotomized data set, while it is significant 
with polytomous data (although the range of plausible effects is still very 
large). The comparison shows that the loss in information by dichotomizing 
the data translates into larger standard errors for the estimated regression 
coefficients. 

The third model we estimated is the RSM without person predictors. We 
could make a similar graphical presentation for the RSM as for the PCM 
(see Figure 3.4). The most important difference with Figure 3.4 would be 
that the medium gray rectangles are of equal length for all items. Because 
this model is nested within the PCM without person predictors, we can 
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TABLE 3.3. Deviance, AIC, and BIC of several adjacent-categories logit models 
(verbal aggression data).a 

Model Npar Deviance AIC BIC 

PCM 49 641 739 923 
PCM(person) 51 612 714 906 
RSM 26 693 745 842 
RSM(person) 28 664 720 825 
PCM(person,item) 13 819 845 894 

Note a: A value of 12000 should be added to each of the numbers in the columns 
Deviance, AlC and BlC. 

perform a LR test to compare both models. The LR test is significant 
(X2 (23) = 52,p < .001) so that the goodness of fit of the RSM must be 
considered inferior to the goodness of fit of the PCM. That comes not as 
a surprise, given the large variability in the lengths of the medium gray 
bars in Figure 3.4. As shown in Table 3.3, the conclusion that the PCM 
fits better is also supported by the lower AIC for the PCM, but not by 
the BIC, which is lower for the RSM (recall that the BIC penalizes more 
heavily for the number of free parameters). If the person predictors Trait 
Anger and Gender are included in the RSM (RSM(person) in Table 3.3), 
the fit of the RSM improves but it still falls short against the corresponding 
PCM (X2 (23) = 52,p < .001). The estimated regression coefficients for the 
person predictors are equal to those obtained under the PCM and their 
interpretation is unaffected. 

For the application of both the PCM and the RSM, the effect of the per­
son predictors was constrained to be equal for the two adjacent-categories 
logits ("perhaps" versus "no" and "yes" versus "perhaps"). This is per­
fectly reasonable in a model for ordered data. Assurne that Trait Anger 
was allowed to have aseparate influence on the two logits and that the 
regression coefficient for the first logit was positive and that for the sec­
ond one was negative. In such a case, the categories are still ordered with 
respect to the random intercept Ep but not with respect to Trait Anger. 
That is because an increase in Trait Anger leads to an increase in the odds 
of responding "perhaps" rather than "no," but to a decrease in the odds 
of responding "yes" rather than "perhaps." Therefore, person predictors 
were restricted to have the same effect on alllogits if the data are ordered. 
When the categories are not ordered, as in a pure baseline-category model, 
this causes no problems. 

Because the PCM with person predictors was the most satisfying model, 
the item predictors that code for the item features are included in the PCM 
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in a next step. The items in the verbal aggression data set can be classi­
fied according to three categorical item features: Behavior Mode (Want 
vs Do), Situation Type (Other-to-blame vs Self-to-blame) and Behavior 
Type (Curse, Scold, Shout). Based on these features, the following item 
predictors are defined: 

X pim1 

X pim2 

X pim3 

X pim4 

1 if the item concerns Do and 0 otherwise, 

1 if the item concerns Other-to-blame and 0 otherwise, 

1 if the item concerns Curse and 0 otherwise, 

1 if the item concerns Scold and 0 otherwise. 

Note that the item predictors are based on a different co ding than in Chap­
ter 1 or 2 (i.e., dummy coding for all predictors). In the PCM with explana­
tory item predictors, the category crossing parameters of the original PCM 
are decomposed as follows (for all i): 

ßi1 010 + OllXpill + 012 X pi12 + 013X pi13 + 014X pi14, 

ßi2 020 + 021 X pi21 + 022X pi22 + 023X pi23 + 024X pi24, 

where OmO is the specific intercept for the mth logit (the two intercepts are 
constant over items) and Omk is the regression weight of predictor k for the 
mth logit. More generally, the mth logit pertaining to person p and item i 
is modeled as X~iml5, where 

X~i1 = (1, X pill ,"" X pi14 , 0, 0, ... ,0), 

X~i2 = (0,0, ... ,0,1, X pi21 , ... ,Xpi24 ), 

15' = (010, Oll,"" 014, 020, 021, ... ,024)' 

The model has only 5 x 2 + 2 + 1 = 13 parameters in total: the 10 regression 
weights of the item properties (one for each combination of a predictor, the 
intercept included, with a logit), the two weights of the person predictors, 
and the variance of the random effect. The goodness of fit of this model 
is given in Table 3.3 on the PCM(person, item) row. The estimated stan­
dard deviation of the random-effects distribution is .90 (SE = .22), which 
is smaller than that for the regular PCM. A similar effect is reported in 
Chapter 2 when going from the Rasch model to the LLTM. As expected, 
the model has a higher deviance and the LR test is significant when corn­
paring it to the PCM with person predictors and item-by-Iogit predictors 
(X2 (38) = 207,p < .001). Also, the AIC and BIC indicate that the model 
fits the data worse than the original PCM with only person predictors (see 
Table 3.3). 

The estimates for the regression coefficients can be found in Table 3.4. 
The contributions of all predictors are significant. The interpretation of 
the coefficients is as follows. Holding everything else constant, going from 
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wanting to doing decreases the odds of responding "perhaps" rather than 
"no" by about 40% (exp( -Oll) = exp( -.54) ~ .6,95% CIfrom.5 to .7) and 
the odds of responding "yes" rather than "perhaps" by 30% (exp( -021) = 
exp(-.35) ~ .7, 95% CI from .6 to .8). This eonclusion is supported by 
Figure 3.4, where there is a tendeney for do-items to be more diffieult. The 
effeets are clearer for the Situation Type. Going from a self-blame situation 
to an other-blame situation and holding everything else eonstant doubles 
the odds of responding "perhaps" rather than "no" (exp(.69) ~ 2.0, 95% 
from 1.7 to 2.5), and inereases the odds of "yes" vs "perhaps" by a factor 
of 2.6 (exp(.97) ~ 2.6, 95% CI from 2.3 to 3.1). This eonclusion is clearly 
supported in Figure 3.4 beeause of the notable tendeney of self-blame items 
to be situated among the most diffieult ones. For the last two variables 
(eursing and seolding) similar interpretations ean be made (in those eases 
all odds inerease, beeause the effects have to be interpreted as going from 
shouting to another reaction, and shouting is the least favorable reaction; 
see also Figure 3.4). All effeet sizes eorrespond to those reported in Chapter 
2 of this volume for the binary model, even though a different eoding for 
the predietors was used. The interpretation of the effeets of the person 
variables Trait Anger and Gender is not affected. 

TABLE 3.4. Estimated regression coefficients for the PCM with person and 
(logit-specific) item predictors (verbal aggression data). 

Predictor Coefficient Estimate SE 

Trait anger ßTrait Anger .05 .01 
Gender ßGender .27 .12 
Intereept 010 1.89 .22 

020 1.96 .23 
Behavior Mode (Do) Oll .54 .06 

021 .35 .07 
Situation Type (Other-to-Blame) 012 -.69 .06 

022 -.97 .08 
Behavior Type (Curse) 013 -1.68 .08 

023 -.93 .10 
Behavior Type (Seold) 014 -.80 .07 

024 -.50 .10 
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3.5.2 Cumulative logit models 

In this section we illustrate briefly how to estimate cumulative logit models 
and how to interpret the results. Only the GRM with person and item 
predictors is estimated and it is shown that the conclusions are very similar 
to those obtained with the adjacent-categories logit model. The SAS code 
for this model is given in Section 3.8.2. 

The regression of the person predictors on ()p is already defined in Equa­
tion 3.15. To understand the inclusion of the item predictors Behavior 
Mode, Situation Type and Behavior Type, we refer to the latent process 
interpretation of the GRM. For the encounter of person p with item i, a 
draw Vpi from a logistic distribution with mean ()p - ßil is realized. If Vpi 

is smaller than 0, then Ypi = 0; if Vpi is larger than ß!2 = ßi2 - ßil, then 
Ypi = 2 (ß!2 > 0); otherwise, if Vpi falls in between these bounds, Ypi = 1. 
The item parameters ßil and ßi2 are decomposed as follows (the definition 
of ß!2 is also given): 

ßil 60 + 61 Xpill + 62 X pi12 + 63 X pi13 + 64 X pi14, 

ßi2 60 + 61 X pill + 62 X pi12 + 63 X pi13 + 64Xpi14 + A, (3.16) 

ß!2 ßi2 - ßi1 = A, 

where Xpill , ... ,Xpi14 are defined as in the coding scheme used for the 
PCM. Thus, X~i1 = (1, Xpill ,"" X pi14 , 0), X~i2 = (1, X pil1 , ... , X pi14 , 1) 
and Ö' = (60,61, ... ,64, A). In this model, the location ofthe latent distribu­
tion is regressed on the item properties, while the boundaries are constant 
over items (at 0 and A > 0). In other words, we have regressed the two 
cumulative logits in the same way on the item predictors allowing for an 
additionallogit-specific effect A for the second logit. If logit-by-item interac­
tions were allowed, the inequality constraint on the thresholds would lead to 
a complicated system of linear inequalities on the regression weights. How­
ever, finding parameter estimates that satisfy a system of linear inequalities 
calls for more advanced optimization routines than those implemented in 
the software for fitting GLMMs and NLMMs. The model we fit has four pa­
rameters less than the PCM (person, item) model from Table 3.3, because 
the effect of the item predictors is not logit-specific. 

Nevertheless, the fit is slightly better than for the corresponding model 
in Table 3.3 (PCM(person, item)). The deviance of the model is 817 (vs 
819), the AIC is 835 (vs 845) and the EIC is 869 (vs 894). The parameter O"c 

is estimated at 1.22 (SE = .06); the remaining parameter estimates can be 
found in Table 3.5. The estimates for the person predictors are somewhat 
larger in magnitude than for the adjacent-categories logit model, but the 
corresponding standard errors are also larger. This phenomenon is to be 
expected (Agresti, 2002), because the effects in the adjacent-categories logit 
model are defined locally (i.e., on the logits oftwo adjacent categories) while 
in the cumulative logit model, they are defined globally (i.e., on the entire 
scale). 
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TABLE 3.5. Estimated regression coefficients for the GRM with person and item 
predictors (verbal aggression data). 

Predictor Coefficient Estimate SE 

Trait anger ßTrait Anger .07 .01 
Gender ßGender .34 .16 
Intercept 80 1.71 .29 
Behavior Mode (Do) 81 .63 .05 
Situation Type (Other-to-blame) 82 -1.08 .05 
Behavior Type (Curse) 83 -1.86 .06 
Behavior Type (Scold) 84 -.95 .06 

For the interpretation of the effects, one has to evaluate the correspond­
ing changes in the cumulative odds when a given predictor changes with one 
unit, holding all other predictors constant (this is also called the cumulative 
odds ratio). For example, going from wanting to doing, with everything else 
held constant, almost halves the cumulative odds of giving a more positive 
response rat her than a more negative one (i.e., "yes" or "perhaps" rather 
than "no," and "yes" rather than "perhaps" or "no"; exp( -8d = .53, 
the 95% CI ranges from .48 to .58). The fit ted model can be called a 
random-effects proportional odds model because going from wanting to 
doing changes both cumulative odds in the same way (i.e., the effects are 
independent of which of the two cumulative logits we consider). 

3.6 Choice of a logit link function 

Before discussing the considerations that lead to the choice of a certain 
link function, we must note that, besides the three logit link functions 
we discussed in this chapter, there is a fourth, less common type: the 
continuation-ratio logit. In this link function the attractiveness of category 
m relative to any category that is higher than m is modeled: Am = {m} 
and Bm = {m + 1, ... , M - 1}. The way the link function is defined already 
indicates that models based on the continuation-ratio logit are especially 
suited for ordered data. Continuation-ratio logit models with a random 
effect and item-by-Iogit interactions result in the so-called sequential or 
stepwise Rasch models as described by Thtz (1990, 1997). 

There are a few considerations that are helpful to make a choice be­
tween logit link functions. First, there is the tradition within a particular 
domain of research. For instance, in educational measurement applications, 
ordinal data are usually modeled using adjacent-categories logits, while the 
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cumulative logits are more common in biostatistical applications. 
Second, the adjacent-categories logits are to be preferred to test the or­

dering of categories. If one is in doubt about the exact ordering of the 
response categories, a formal test of the presumed ordering is helpful. We 
have seen that the adjacent-categories logit models are a special case of the 
baseline-category logit models and if one allows for logit-specific discrim­
ination parameters, a LR test for comparing the adjacent-categories logit 
model with a less restrictive baseline-category logit model yields a test of 
the ordering of the categories. The cumulative logit models impose an or­
dering and the model cannot be compared with the baseline-category logit 
model. 

A third consideration is the interpretation of the parameters. Gener­
ally, the cumulative logit model is the easiest to interpret for ordinal data 
because of the proportional odds property (see above). Another interpreta­
tional advantage of the cumulative logit models is that if adjacent categories 
are merged into a new category, this does not affect the estimates of the 
remaining parameters (invariance under grouping), while this is not true 
for the baseline-category logit models or adjacent-categories logit models 
(Jansen & Roskam, 1986; McCullagh, 1980). 

Fourth, substantial features in the data may lead to a certain choice. 
For instance, if the response process can be thought of as being sequen­
tial, the continuation-ratio logit model is to be preferred. An item where 
continuation-ratio logit can be applied is the following: "Have you ever suf­
fered from a psychiatric illness?" with response categories "no," "yes, but 
never hospitalized," and "yes, and I was hospitalized." The first step in the 
responding to such a question is to decide whether one has suffered from 
a psychiatric illness and the second step is whether one was hospitalized 
given that one does have such an illness. 

3.7 Concluding remarks 

In this chapter we have presented some common models that can be used to 
analyze polytomous data. It is shown that the principles in model construc­
tion, estimation and testing that applied to models for binary data carry 
over without much difficulty to the polytomous case. However, polytomous 
data are more complex and that leads to more flexibility when setting up 
the model (see Section 3.6 on the choice of the link function). 

All extensions for models for binary data that are proposed throughout 
the volume can also be applied to the models presented in this chapter. 
Here we mention a few important modifications explicitly. First, we may 
abandon the unidimensionality assumption and introduce multiple random 
effects (among others, see Hartzel, et al. , 2001; Tutz & Hennevogl, 1996; 
for multidimensional extensions of models for binary data, see Chapter 8, 
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this volume). Besides the simplest extension in which the intercept is made 
random over persons, also regression slopes of predictors may be allowed 
to vary over persons. 

A second extension is the already mentioned possibility of including dis­
crimination parameters (for models for binary data with discrimination pa­
rameters, see Chapter 8, this volume). The discrimination parameters may 
vary over items: For fun item-by-logit cumulative logit models, this leads to 
the original GRM (Samejima, 1969) and for the adjacent-categories logits 
to the PCM with a discrimination parameter (Muraki, 1992). However, for 
the nominal model, we can go one step furt her because it is also natural 
to consider discrimination parameters that vary over the logits of a single 
item and between items as in the original model proposed by Bock (1972). 
Models with discrimination parameters can be used to test a hypothesis 
about a certain apriori ordering of the categories by comparing the fit of 
a model for ordered categories and a more relaxed model in which there is 
no restriction that requires the categories to be ordered in a certain way. 

Third, when the conditional independence assumption does not hold in 
the data, one can extend the models from this chapter with the techniques 
presented in Chapters 7 and 10. Moreover, the framework for differential 
item functioning (DIF) described in Chapter 7 is easily adapted to models 
for polytomous data. 

3.8 Software 

All models considered in this chapter were estimated using the procedure 
NLMIXED from SAS. For two of the models discussed in Section 3.5, the 
program code is given here. We recommend that you first read Chapter 12 
on software, particularly the parts on NLMIXED. 

The SAS code mayaiso seem a little bit unfamiliar. That is because for 
polytomous outcome variables NLMIXED does not have a standard dis­
tribution implemented. Therefore, the user has to specify the contribution 
to the loglikelihood of an observation through the statement MODEL y rv 

general (11), where 11 stands for the log of the probability of the observed 
response for a person-by-item combination. 

All models were estimated using nonadaptive Gaussian quadrat ure with 
20 no des to approximate the integral over {}p. For all estimated models, the 
starting values were set to zero for the regression coefficients and to .5 (for 
PCMs and GRMs) or 1.5 (for RSMs) for the standard deviations because 
convergence proved to be faster if the starting value were set at these 
values (compared to the standard value of 1). We specified the optimization 
algorithm to use the Newton-Raphson technique. 
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3.8.1 Partial credit model with person predictors (verbal 
aggression data) 

Code 

PROC NLMIXED data=aggression_poly method=gauss 
technique=newrap noad qpoints=20; 
PARMS b1_1-b1_24=0 b2_1-b2_24=0 gl-g2=0 sd=.5; 
theta=eps+g1*anger+g2*male; 
beta1=b1_1*x1+b1_2*x2+b1_3*x3+b1_4*x4+b1_5*x5 
+b1_6*x6+b1_7*x7+b1_8*x8+b1_9*x9+b1_10*x10 
+b1_11*x11+b1_12*x12+bl_13*x13+b1_14*x14+b1_15*x15 
+b1_16*x16+b1_17*x17+b1_18*x18+b1_19*x19+b1_20*x20 
+b1_21*x21+b1_22*x22+b1_23*x23+b1_24*x24; 
beta2=b2_1*x1+b2_2*x2+b2_3*x3+b2_4*x4+b2_5*x5 
+b2_6*x6+b2_7*x7+b2_8*x8+b2_9*x9+b2_10*x10 
+b2_11*x11+b2_12*x12+b2_13*x13+b2_14*x14+b2_15*x15 
+b2_16*x16+b2_17*x17+b2_18*x18+b2_19*x19+b2_20*x20 
+b2_21*x21+b2_22*x22+b2_23*x23+b2_24*x24; 
exp1=exp(theta-beta1); 
exp2=exp(2*theta-beta1-beta2); 
denom=1+exp1+exp2; 
if (y=O) then p=l/denom; 
else if (y=l) then p=exp1/denom; 
else if (y=2) then p=exp2/denom; 
if (p>le-8) then ll=log(p); 
else 11=-le100; 
MODEL y rv general (11) ; 
RANDOM eps rv normal(0,sd**2) subject=person; 

ESTIMATE 'sd**2' sd**2; 
ESTIMATE 'exp(lSD*gl), exp(4.85*gl); 
ESTIMATE 'exp(g2)' exp(g2); 
RUN; 

Comments 

1. The statements contain an error trap: Before taking the logarithm of the 
probability p, it is checked whether p is large enough. 
2. In the RANDOM statement sd**2 is used for the variance which yields then 
an estimate of the O"(}. In order to obtain an estimate of the variance one 
can either replace sd**2 with var (or another term such as sd2) or one 
can formulate an ESTIMATE statement as explained in comment 3. 
3. The three ESTIMATE statements at the end are included to find the 
estimate of the variance and the effect of the person predictors on the 
odds scale. However, more importantly, the output of these estimates also 
contains the standard errors of the transformed parameters. For the effect 
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of Trait Anger, we requested directly the effect of an increase of 1 standard 
deviation (SD = 4.85). 

3.8.2 Graded response model with item and person predictors 
(verbal aggression data) 

Code 

PROC NLMIXED data=aggression_poly method=gauss 
technique=newrap noad qpoints=20; 
PARMS a=O gl-g2=0 d1-d4=0 lambda=.5 sd=1.5; 
BOUNDS lambda>O; 
theta=eps+g1*anger+g2*male; 
beta=a+d1*do+d2*self+d3*curse+d4*scold; 
exp1=exp(theta-beta); 
exp2=exp(theta-(beta+lambda)); 
denom1=1+exp1; 
denom2=1+exp2; 
if (y=O) then p=exp1/denom1; 
else if (y=l) then p=exp1/denom1-exp2/denom2; 
else if (y=2) then p=exp2/denom2; 
if (p>le-8) then ll=log(p); 
else 11=-le100; 
MODEL y ~ general(ll); 
RANDOM eps ~ normal(0,sd**2) subject=person; 
ESTIMATE 'sd**2' sd**2; 
ESTIMATE 'lSD*gl' exp(4.85*gl); 
ESTIMATE 'exp(g2)' exp(g2); 
ESTIMATE 'exp(-d1)' exp(-d1); 
ESTIMATE 'exp(-d2)' exp(-d2); 
ESTIMATE 'exp(-d3)' exp(-d3); 
ESTIMATE 'exp(-d4)' exp(-d4); 
RUN; 

Comments 

In the ESTIMATE statements we request an estimate of the variance, and 
of the person predictor and item predictor effects on the odds scale. The 
BOUNDS statement was included in order to restrict lambda to be positive. 

3.9 Exercises 

1. Show that the columns of the fixed-effects predictor matrix of a rating 
scale model form a subset of the columns of the transformed fixed-effects 
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predictor matrix of a partial credit model. How many fixed-effects regres­
sion coefficients does the PCM have and how many does the RSM have? 

2. The following data are given: The responses of P persons to 2 items 
with each four ordered response categories ("never," "rarely," "often," and 
"always" ). Suppose you suspect that men have the tendency to avoid the 
extreme categories (never, always), more than women. Set up a predictor 
matrix for an adjacent-categories logit model that can test this hypothe­
sis. What kind of predictor do you need to test the hypothesis? (Stack two 
predictor matrices below one another: one for a woman and one for a man.) 

3. Assurne that in the verbal aggression data there is a cost associated 
with responding in a higher category due to social desirability. The cost of 
a O-response ("no") is 0, of al-response ("perhaps" ) is 1 and of a 2-response 
("yes") is 2. Construct the predictor matrices for a full item-by-logit and 
item and logit main-effects adjacent-categories logit model and discuss both 
predictor matrices. 

4. Define the probit version of the GRM. 

5. When the person predictors Trait Anger and Gender are included in 
the PCM, the relative differences among category crossing parameters both 
within and between items are preserved. However, their absolute values in­
crease by approximately 1.2; hence, the whole scale seems to be shifted to 
the right compared to the PCM without person predictors. How can you 
explain this finding? 

6. Which test would you use to evaluate whether the item property Be­
havior Type contributes to the explanation of the responses in the PCM 
with person and item predictors, the PCM (person, item) in Table 3.3? 

7. Can you improve the goodness of fit of a PCM with person predictors 
and logit-specific item predictors by including two-way interactions between 
item predictors? Start from Figure 3.4 to make a choice of candidate in­
teractions. Try to find a parsimonious model by dropping nonsignificant 
interaction terms. Discuss the interpretation of the remaining inter action 
parameters and relate the effects back to Figure 3.4. 

8. Estimate a RSM with the person predictors Trait Anger and Gender 
and with the three item properties (Behavior Mode, Situation Type, and 
Behavior Type) as item predictors. Assess the fit of the model and inter­
pret the regression coefficients on the odds scale (the scale with exponential 
instead of logarithmic parameters). 
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Chapter 4 

An Introduction to 
(Generalized (Non)Linear 
Mixed Models 

Geert Molenberghs 
Geert Verbeke 

4.1 Introduction 

In applied sciences, one is often confronted with the collection of correlated 
da ta or otherwise hierarchical data. This generic term embraces a multi­
tude of data structures, such as multivariate observations, clustered data, 
repeated measurements (called 'repeated observations' in this volume), lon­
gitudinal data, and spatially correlated data. In particular, studies are often 
designed to investigate changes in a specific parameter which is measured 
repeatedly over time in the participating persons. This is in contrast to 
cross-sectional studies where the response of interest is measured only once 
for each individual. Longitudinal studies are conceived for the investigation 
of such changes, together with the evolution of relevant covariates. 

A very important characteristic of data to be analyzed is the type of 
outcome. Methods for continuous longitudinal data form no doubt the best 
developed and most advanced body of research (Verbeke & Molenberghs, 
1997, 2000); the same is true for software implementation. This is natural, 
since the special status and the elegant properties of the normal distribu­
tion simplify model building and ease software development. A number of 
software tools, such as the SAS procedure MIXED, the S-PLUS function 
lme, HLM, and MLwiN have been developed in this area. However, cate­
gorical (nominal, ordinal, and binary) and discrete out comes are also very 
prominent in statistical practice. For example, in many surveys regarding 
educational testing or quality of life, as weIl as in behavioral observations, 
responses are often scored on binary or ordinal scales. 

Two fairly different views can be adopted. The first one, supported by 
large-sample results, states that normal theory should be applied as much 
as possible, even to non-normal data such as ordinal scores and counts. 
A different view is that each type of outcome should be analyzed using 
instruments that exploit the nature of the data, giving categorical data, 
counts, etc. their proper methods for analysis. Extensions of generalized 
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linear models to the longitudinal case are discussed in Diggle, Heagerty, 
Liang, and Zeger (2002), where a lot of emphasis is on generalized estimat­
ing equations (Liang & Zeger 1986). Generalized linear mixed models have 
been proposed andjor studied by, for example, Stiratelli, Laird, and Ware 
(1984), Wolfinger and O'ConneIl (1993), and Breslow and Clayton (1993). 
Fahrmeir and Tutz (2001) devote an entire book to generalized linear mod­
els for multivariate settings. Subscribing to the second point of view, this 
review will present, discuss, and illustrate methodology specific to the case 
of non-continuous data. 

In correlated settings, each unit (respondent, cluster, person, patient, ... ) 
typically has a vector Y of responses (here, we will use the terms 'person' 
or 'individual' to indicate study units). This leads to several, generally non­
equivalent, extensions of univariate models. In a marginal model, marginal 
distributions for each component of Y are modeled based on a set X of 
predictor variables. The correlation among the components of Y can then 
be captured either by adopting a fully parametric approach or by means of 
working assumptions, such as in the semiparametric approach of Liang and 
Zeger (1986). Alternatively, in a random-effects model, the predictor vari­
ables X are supplemented with a vector (J of random effects, conditional 
upon which the components of Y are usually assumed to be independent. 
This does not preclude that more elaborate models are possible if resid­
ual dependence is detected (Longford, 1993). FinaIly, a conditional model 
describes the distribution of the components of Y, conditional on X but 
also conditional on (a subset of) the other components of Y. WeIl-known 
members of this class of models are loglinear models (Gilula & Haberman, 
1994). See also Chapters 7 and 10 for applications of conditional models. 

A more elaborate sketch of the different model families is provided in 
Section 4.2. Random-effects models, and in particular the generalized lin­
ear mixed model, are discussed in Section 4.3. Specific attention is devoted 
to fitting algorithms (Section 4.5), as weIl as to inference (Section 4.6). 
These ideas are exemplified using a case study from a medical context in 
Section 4.7. Issues arising when data are incomplete are reviewed in Sec­
tion 4.8, while abrief overview of possible extensions is given in Section 4.9. 

4.2 Model families 

In the case that responses are of a continuous nature, a number of mar­
ginal, conditional, and random-effects models fit, to a large extent, within 
the framework of the linear mixed model. This convenient property is due 
to the elegant properties of the normal distribution, the fact that the iden­
tity link function can be used, implying a high degree of linearity, and a 
separation between the mean vector and the covariance matrix within the 
normal context. These properties of normal models do not extend to the 
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general case of non-normally distributed repeated observations, which are 
the focus of this volume. In conditionally-specified models the prob ability 
of a positive response far one member of the cluster is modeled condi­
tionally upon other out comes for the same person, while marginal models 
relate the covariates directly to the marginal probabilities. Random-effects 
models differ from the two previous models by the inclusion of parameters 
which are specific to the cluster. 

Let us illustrate the three modeling families in the context of a survey 
with two items i = 1,2 recorded for a number of persons p = 1, ... , P, with 
out comes Y p1 and Y p2 ' Covariate information is assumed to be present 
but suppressed from notation. A marginal model is built from univariate 
models for each of the out comes Ypi separately such as, for example, two 
logistic regressions (i = 1,2). Such logistic regressions may or may not have 
parameters in common. This approach does not fully specify the joint dis­
tribution of the outcomes. In some settings, this does not pose problems 
as the scientific quest ion of interest may be phrased completely in terms 
of such univariate distributions. In other settings, for example, when the 
association between the out comes is of direct interest, or when one has an 
interest in so-called joint probabilities (e.g., the prob ability of scoring a 
certain level on both responses simultaneouly), one has to specify the joint 
distribution. In this case, this is achieved by considering a measure of as­
sociation between the two outcomes (e.g., correlation, odds ratio, Cohen's 
kappa coefficient, Kendall's tau). A conditional model starts from, for ex­
ample, a specification of the distribution of Y p1 given Y p2 = Yp2, and, at the 
same time Y p2 given Y p1 = Ypl' Not every pair of specifications is valid since 
one has to ensure that the model specification corresponds to exactly one 
joint distribution. In the loglinear model specification, this correspondence 
is always satisfied. In a random-effects model, one assurnes person-specific 
unobserved random effects (e.g., Bp in the scalar version), such that the Y pi 

(i = 1,2), are independent, conditional upon Bpo This so-called conditional 
independence model is the simplest instance of a random-effects model. 
Formulating a model is relatively easy since, due to the conditional inde­
pendence, one merely has to consider a univariate model for each Ypi!Bp , in 
conjunction with a distribution for the random effects. 

Marginal models are appropriate to investigate the effect of covariates 
on the univariate marginal probabilities at the level of the population. If 
of scientific interest, the effect of covariates on the associations can be 
studied as weIl. Conditional models are especially suited for inferences on 
conditional probabilities, for example, on transition probabilities. Finally, 
random-effects models are the preferred choice to model differences and 
heterogeneity and sources of random variation in general, and if one wants 
to make inferences on the effect of covariates at the individual level. 

All of this implies that each model family requires its own specific analy­
sis and, consequently, software tools. In many cases, standard maximum 
likelihood analyses are prohibitive in terms of computational requirements. 



114 Geert Molenberghs, Geert Verbeke 

Therefore, specific methods such as generalized estimating equations (Liang 
& Zeger 1986) and pseudo-likelihood (Aerts, Geys, Molenberghs, & Ryan 
2002) have been developed. Both apply to marginal models, whereas pseudo­
likelihood methodology can be used in the context of conditional models 
as weIl. In situations where random-effects models are used, the likelihood 
function involves integration over the random-effects distribution for which 
generaIly no closed forms are available. Estimation methods then either 
employ approximations to the likelihood or score functions, or resort to 
numerical integration techniques (see Section 4.5). 

These considerations imply that it is important to reflect on which model 
family to select for analysis. The proper process is to reflect on the scientific 
question, in terms of which the most appropriate model formulation is then 
chosen. 

For example, opting for a marginal model for repeated binary data pre­
cludes the researcher from answering conditional and transitional quest ions 
in terms of simple model parameters, because the joint distribution is not of 
primary interest. Based on the model formulations, parameter estimation 
and inferential methods then need to be chosen. Finally, the appropriate 
software tool needs to be determined. Of course, from a pragmatic point 
of view, the method that is used to fit the model, depends not only on 
the assumptions the investigator is willing to make, but also (to some ex­
tent) on the availability of computational algorithms. In the remainder of 
this chapter, we will briefly describe the marginal and conditional families. 
Subsequent chapters are devoted to random-effects models. 

Throughout this chapter, Ypi will denote the ith observation for person 
p, p = 1, ... , P, i = 1, ... , I. In many applications, the different observa­
tions within persons will refer to responses to aseries of items in a testing 
situation. In other examples, the different observations refer to a single 
response measured repeatedly over time within all persons. In the latter 
case, the data are called longitudinal. A key aspect of longitudinal data is 
the fact that the 'time' dimension is usually of interest. This means that 
one wishes to study how the response of interest evolves over time in the 
participating persons. It should be emphasized that most models that will 
be discussed here do not explicitly assurne the number of observations to 
be the same for aIl persons. However, we do not include that possibility in 
our notation, in order to keep the notation as simple as possible. Finally, 
let Yp = (Yp1 , ... , YpI)' denote the vector of all measurements available for 
person p. 

4.2.1 Marginal models 

In marginal models, the parameters characterize the marginal probabilities 
of a subset of the out comes , without conditioning on the other out comes 
or on random effects. Advantages and disadvantages of marginal modeling 
have been discussed in Diggle et al. (2002), and Fahrmeir and Tutz (2001). 
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The classical route is to specify the full joint distribution for the set of 
measurements Yp1 , ... , YpI per individual. Clearly, this implies the need 
to specify all moments up to order I. Especially for longer sequences, not 
only specifying such a distribution, but also making inferences about its 
parameters, traditionally done using maximum likelihood principles, can 
become cumbersome. Therefore, a number of simplifying alternative in­
ferential methods have been proposed, necessitating the specification of a 
small number of moments only. In a large number of cases, one is primar­
ily interested in the mean structure, hence only the first moments need to 
be specified. Sometimes, there is also interest in the association structure, 
quantified, for example using odds ratios or correlations. As will be dis­
cussed further, a popular non-likelihood framework is that of generalized 
estimating equations. 

Bahadur (1961) proposed a fully specified marginal model for binary 
data, accounting for the association via marginal correlations, and enabling 
likelihood inference. This model has also been studied by Cox (1972), Kup­
per and Haseman (1978), and Altham (1978). The general form of the 
Bahadur model requires the specification of a number of parameters, ex­
ponential in the number of measurements per person, often prohibiting its 
use. 

Let 

and 

where Ypi is an actual value of the binary response variable Ypi ' Further, let 
Ppii' = E(EpiEpi'), Ppii'i" = E(EpiEpi'Epi"), ... , Pp12 ... 1 = E(EplEp2 ... EpI)' 
The parameters Ppii' are classical Pearson type correlation coefficients. 

The general Bahadur model can be represented by the expression f(yp) = 
h(Yp)c(yp), where 

I 

f ( ) rr Ypi (1 )l-Y . 1 yp = 7r pi - 7r pi p' , 

i=l 

and 

1 + Li<i' ppii,epiepi' (4.1) 

+ Li<i'<i" Ppii'i"epiepi,epi" + ... + Pp12 ... Ieplep2··· epI· 

Thus, the prob ability mass function is the product of the independence 
model h (Yp) (combining I logistic regressions) and the correction factor 
c(Yp). The factor c(Yp) can be viewed as a model for overdispersion. 

A drawback of the Bahadur approach is the existence of severe con­
straints on the correlation parameter space, specified by Equation 4.1. A 
general study of this phenomenon is given in Declerck, Aerts and Molen­
berghs (1998). 
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Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have pro­
posed models which parametrize the association in terms of marginal odds 
ratios. Dale (1986) defined the bivariate global odds ratio model, based on a 
bivariate Plackett distribution (Plackett, 1965). Molenberghs and Lesaffre 
(1994, 1999) extended this model to multivariate ordinal outcomes. Alter­
native marginal models include the correlated binomial models of Altharn 
(1978) and the double binomial model of Efron (1986). 

The main issue with fulllikelihood approaches is the computational com­
plexity they entail. When we are mainly interested in first-order marginal 
mean parameters and pairwise interactions, a fulllikelihood procedure can 
be replaced by quasi-likelihood methods (McCullagh & NeIder, 1989). In 
quasi-likelihood, the mean response is expressed as a parametric function 
of covariates; the variance is assumed to be a function of the mean up to 
possibly unknown scale parameters. Wedderburn (1974) first noted that 
likelihood and quasi-likelihood theories coincide for exponential families 
and that the quasi-likelihood 'estimating equations' provide consistent es­
timates of the regression parameters ß in any generalized linear model, 
even for choices of link and variance functions that do not correspond to 
exponential families. 

Liang and Zeger (1986) proposed so-called generalized estimating equa­
tions (GEE, later denoted as GEE1) which require only the correct speci­
fication of the univariate marginal distributions provided one is willing to 
adopt 'working' assumptions about the association structure. They esti­
mate the parameters associated with the marginal expected value of an 
individual's vector of binary responses and express the working assump­
tions about the association between pairs of outcomes in terms of marginal 
correlations. The method combines estimating equations for the regression 
parameters ß with moment-based estimation for the correlation parameters 
entering the working assumptions. 

Prentice (1988) extended their results to allow joint estimation of prob­
abilities and pairwise correlations. Lipsitz, Laird and Harrington (1991) 
modified the estimating equations of Prentice (1988) to allow modeling of 
the association through marginal odds ratios rat her than marginal corre­
lations. When adopting GEE1, one does not use information about the 
association structure to estimate the main effect parameters. As a result, 
it can be shown that GEE1 yields consistent main effect estimators, even 
when the association structure is misspecified. However, severe misspecifi­
cation may seriously affect the efficiency of the GEE1 estimators. In ad­
dition, GEE1 should be avoided when some scientific interest is placed on 
the association parameters. 

A second order extension of these estimating equations (GEE2) that 
include the marginal pairwise association as well has been studied by Liang, 
Zeger and Qaqish (1992). They note that GEE2 is nearly fully efficient 
though bias may occur in the estimation of the main effect parameters 
when the association structure is misspecified. 
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Ample technical detail can be found in Diggle et al. (2002), and Aerts et 
al. (2002). 

4.2.2 Conditional models 

In a conditional model the parameters describe a feature (probability, odds, 
logit, etc.) of (a set of) outcomes, given values for the other out comes (Cox, 
1972). The best known example is undoubtedly the loglinear model. Rosner 
(1984) described a conditional logistic model. Owing to the popularity of 
marginal (especially generalized estimating equations) and random-effects 
models for correlated binary data, conditional models have received rel­
atively little attention, especially in the context of multivariate clustered 
data. Diggle et al. (2002) criticized the conditional approach because the 
interpretation of the covariate effects on the probability of one outcome 
is conditional on the responses of other out comes for the same individ­
ual, out comes of other individuals and the cluster size. Many conditional 
models, in particular the loglinear model, fall within the framework of the 
exponential family. 

One proposal is the model by Cox (1972). Specific choices for its para­
meters lead to specific forms of the loglinear model. The probability mass 
function is given by 

exp (t ()piYpi + z= Wpii'YpiYpi' + ... 
i=l i<i' 

+ Wpl...IYpl ... YpI - A(8p )) . 

The () parameters can be thought of as 'main effects,' whereas the W para­
meters are association parameters or interactions. 

Models that do not include all interactions are derived by replacing the 
vector of W parameters by one of its subvectors. A useful special case is 
found by setting all third- and higher-order parameters equal to zero, which 
is a member of the quadratic exponential family discussed by Zhao and 
Prentice (1990). Thelot (1985) studied the case where I = 2. If 1= 1, the 
model reduces to ordinary logistic regression. The parameters Wpii' can be 
interpreted as conditional odds ratios, i.e., the odds ratio between responses 
to items i and i', conditional upon all other outcomes being zero. 

In the very specific case of ordered items within persons, it is natural to 
modellater item responses Ypi , not only in terms of covariates, but also in 
terms of earlier item responses Yp1 ,"" Yp,i-l, Le., its history. This class 
of models is usually referred to as transition or autoregressive models. The 
joint density f(Ypl,"" YpI) can then be decomposed as 

naturally leading to maximum likelihood inference. Often, dependence on 
the history is restricted to a fixed and small number of recent responses. 
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4.3 Mixed-effects models 

Models with person-specific parameters are differentiated from population­
averaged models by the inclusion of parameters which are specific to the 
cluster. Unlike the case for correlated Gaussian outcomes, the parameters of 
the random-effects and population-averaged models for correlated binary 
data describe different types of effects of the covariates on the response 
probabilities (Neuhaus, 1992). 

The choice between population-averaged and random-effects strategies 
may heavily depend on the scientific goals. Population-averaged models 
evaluate the overall risk as a function of covariates. With a random-effects 
approach, the response rates are modeled as a function of covariates and 
parameters, specific to a person. In such models, interpretation of fixed­
effect parameters is conditional on a constant level of the random-effects 
parameter. As such the effect of a change in a covariate can be studied 
both at the population-averaged level and at the level of the individual 
(Neuhaus, Kalbfleisch, & Hauck, 1991). 

Person-specific parameters can be dealt with in essentially three ways: 
(1) as fixed effects, (2) as random effects, and (3) by conditioning upon their 
sufficient statistics. The first approach is seemingly simplest but in many 
cases flawed since the number of parameters then increases with a rate pro­
portional to the sample size, thereby invalidating most standard inferential 
results. This first approach corresponds to what is called joint maximum 
likelihood (JML) in psychometrics. The second approach is very popular. 
There are two routes to introduce randomness into the model parameters. 
Stiratelli et al. (1984) assurne the parameter vector to be normally distrib­
uted. This idea has been carried further in the work on so-called generalized 
linear mixed models (Breslow & Clayton, 1993) which is closely related to 
linear and nonlinear mixed models. This corresponds to what is called mar­
ginal maximum likelihood (MML) in psychometrics. Alternatively, Skellam 
(1948) introduced the beta-binomial model, in which the adverse event 
probability of any response of a particular person comes from a beta dis­
tribution. Hence, this model can also be viewed as a random-effects model. 
The third approach is weIl known in epidemiology, more precisely in the 
context of matched case-control studies. In particular, conditionallogistic 
regression is then often considered (Breslow & Day, 1987; Agresti, 1990). 
In general, with so-called conditionallikelihood methods, one conditions on 
the sufficient statistics for the random effects (Conaway, 1989; Ten Have, 
Landis, & Weaver, 1995). This corresponds to what is called conditional 
maximum likelihood (CML) in psychometrics. Note that the conditioning 
considered here is different from the one considered in Section 4.2.2, since 
here we condition on sufficient statistics within a random-effects model 
rat her than formulating the model directly in conditional terms. In the 
remainder of this section we will consider very briefly the beta-binomial 
model and more extensively the classical mixed-effects models. 
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4.3.1 The beta-binomial model 

Rather than modeling marginal functions directly, a popular approach is 
to assume a random-effects model in which each unit has a random para­
meter (vector). Skellam (1948) and Kleinman (1973) assume the success 
prob ability 7rp of any response in unit p to come from a beta distribution 
with parameters a p and ßp: 

7r"'p-1(1- 7r)ßp-1 

B(ap, ßp) 
o ::::; 7r ::::; 1, 

where B(.,.) denotes the beta function. Conditional on 7rp , the number 

of correct responses Sp = z=f=l Ypi in the pth unit follows a binomial 
distribution. This leads to the well-known beta-binomial model. The mean 
of this distribution is /-Lp = 17r P = I ap j (ap + ßp), and the variance is 
O"~ = l7rp(1- 7rp)(l + IBp)j(l + Bp) with Bp = 1j(ap + ßp). It can be shown 
that the intrac1ass correlation is given by Pp = (ap + ßp + 1) -1 . 

Generalized linear model ideas can be applied to model the mean para­
meter 7rp (e.g., using a logit link) and the correlation parameter Pp (e.g., 
using Fisher's z transform). Kupper and Haseman (1978) compare the Ba­
hadur model to the beta-binomial model. They conc1ude that the models 
perform similarly in three c1ustered data experiments, whereas they both 
outperform the (naive) binomial model. This model is of interest if there 
are no covariates for the repeated observations. It would not be relevant if 
there are systematic differences between items. 

4.3.2 Mixed models 

Perhaps the most commonly encountered person-specific (or random-effects) 
model is the generalized linear mixed model. It is best to first introduce 
linear mixed models and nonlinear mixed models as a basis for the intro­
duction of generalized linear mixed models. To emphasize they fit within a 
single common framework, we first give a general formulation. 

General formulation 

As before, let Ypi denote the ith measurement available for the pth person, 
and let Y p denote the corresponding vector of all measurements. Our gen­
eral model assumes that Y p (possibly appropriately transformed) satisfies 

(4.2) 

meaning that conditional on (Jp, Y p follows a pre-specified distribution 
Fp , possibly depending on covariates, and parametrized through a vec­
tor e of unknown parameters, common to all persons. Further, (Jp is a 
R-dimensional vector of person-specific parameters, called random effects, 
assumed to follow a so-called mixing distribution Gwhich may depend on 
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a vector 'IjJ of unknown parameters, i.e., Op rv G('IjJ). The Op reflect the 
between-person heterogeneity in the population with respect to the distri­
bution of Y p . Different specifications of Fp will lead to different models. 
For example, considering the factors made up of the out comes Ypi given its 
predecessors (Yp1 , ... , Yp,i-d' leads to a so-called transitional model. Note 
also that omission of the random effects Op results in a marginal model, 
discussed earlier in Section 4.2.1, for the response vector Y p . In the pres­
ence of random effects, conditional independence is often assumed, under 
which the components Ypi in Y p are independent, conditional on Op. The 
distribution function Fp in Equation 4.2 then becomes a product over the 
I independent elements in Y p . 

Specific choices for the distributions Fp and G lead to specific mod­
els. One approach is to leave G completely unspecified and to use non­
parametric maximum likelihood (NPML; Böhning, 1999) estimation, which 
maximizes the likelihood over all possible distributions G. The resulting es­
timate 8 is then always discrete with finite support. Depending on the con­
text, this may or may not be a realistic reflection of the true heterogeneity 
between units. One therefore often assurnes G to be of a specific paramet­
ric form. Most models used in this volume will assurne the random-effects 
distribution G to be normal, leading to the dassical mixed model (utilized 
up to Chapter 10), or to be a finite mixt ure of normals, as in Chapter 11. 
If G is discrete with fixed support size, the dassicallatent dass models are 
obtained. See also Chapter 12 for a discussion on choices for G. 

The linear mixed model as discussed in Section 4.3.2 is the most special 
case, due to its convenient normality and linearity properties. All other 
models exhibit nonlinearity in one or another sense. Note that nonlinearity 
of a model can arise due to the choice of model form (the link function in 
generalized linear model terms) as well as due to the nonlinearity of the 
systematic component. Hence, normal response variables and normal ran­
dom effects, combined with a nonlinear predictor, still pro duces a nonlinear 
mixed model. 

Linear mixed models 

When continuous (normally distributed) hierarchical data are considered 
(repeated observations, dustered data, geographical data, longitudinal data, 
etc.), a general, and very flexible, dass of parametric models is obtained 
from introducing random effects Op in the multivariate linear regression 
model. Suppose that a specific outcome Y is observed repeatedly over 
time for a set of persons, and suppose that the individual trajectories 
are of the type as shown in Figure 4.1 (the term 'evolution' will be used 
for such trajectories). Obviously, a linear regression model with intercept 
and linear time effect seems plausible to describe the data. However, dif­
ferent persons tend to have different intercepts and different slopes. One 
can therefore assurne that the outcome Ypi , measured at time tpi , satisfies 
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FIGURE 4.1. Hypothetical example of continuous longitudinal data which can 
be weH described by a linear mixed model with random intercepts and random 
slopes. The thin lines represent the observed subject-specific evolutions. The bold 
line represents the population-averaged evolution. 

Ypi = iJpo + iJp1tpi + cpi. Assuming the vector Op (iJpo , iJpä of person­
specific parameters to be bivariate normal with mean (ßo, ßd' and 2 x 2 
covariance matrix ~ (to be distinguished from 0, see Equations 4.3 and 
4.4), and assuming the error terms cpi to be normal as weIl, this leads to 
a so-called linear mixed model. In practice, one will often formulate the 
model as 

Ypi = (ßo + Opo) + (ßl + Opdtpi + Cpi, 

with iJpo ßo + Opo and iJp1 = ßl + Opl, and the new random effects 
()p = (Opo, Opd' are now assumed to have mean zero. 

In order to present the model, a notation will be used which is slightly 
different from the notation used in most chapters of this volume. X will be 
used for the item by item covariate matrix for item covariates with fixed 
effects denoted by ß; and Z will be used for the item by item covariate 
matrix for item covariates with random effects, denoted by ()p. Since, in 
principle, these matrices can differ depending on the person, they are given 
a person subscript. In fact, in this way, one can also define person covariates, 
with columns in X p and Zp, that do not differ depending on the item but 
only on the person. 

The above model can be viewed as a special case of the general linear 
mixed model which assurnes that the outcome vector Y p follows a mul­
tivariate normal distribution, with mean vector Xpß + Zp()p and some 
covariance matrix 0, and assumed that the random effects ()p also follow a 
(multivariate) normal distribution, meaning that the I-dimensional vector 
Y p satisfies 

( 4.3) 
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N(O,~), ( 4.4) 

where X p and Zp are (1 x K) and (1 x J) dimensional matrices of known 
covariates, ß is a K-dimensional vector of regression parameters, called the 
fixed effects, ~ is a general (J x J) covariance matrix, and 0 is a (1 x 1) 
covariance matrix. This so-called hierarchical formulation corresponds to 
making Gaussian assumptions about Fp (in Equation 4.3) and about G (in 
Equation 4.4), both introduced in Section 4.3.2. 

Nonlinear mixed models 

An extension of the model in Equation 4.3 which allows for nonlinear re­
lationships between the responses in Y p and the covariates in X p and/or 
Zp is 

N(fl:~(Xp, Zp, ß, (Jp), 0) ( 4.5) 

for some known inverse link function f;:~. The definition of X p, Zp, ß, 
and (Jp remains unchanged, the random effects (Jp are again assumed to be 
normally distributed with mean vector 0 and covariance matrix ~. 

Average evolutions, conditional on random effects 
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FIGURE 4.2. Graphical representation of a random-intercepts logistic model. 
The thin lines represent the person-specific logistic regression models. The bold 
line represents the population-averaged evolution. 

The generalized linear mixed model 

The generalized linear mixed model is the most frequently used random­
effects model for discrete out comes. As an example, consider a study in 
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which a specific test is taken repeatedly over time, on a set of children. The 
outcome Ypi taken at time (age) tpi is of the binary type, i.e., pass/fail. 
Continuing the use of person-specific regression models, a logistic model 
could be proposed in this case, i.e., one could assume Ypi to be Bernoulli 
distributed with success probability 7rp i satisfying 

logit(7rp i) = (ßl + Op) + ß2tpi. 

Hence, we have a logistic regression model for each person separately. 
Through the person-specific intercepts Op, the model allows all persons 
to be different with respect to their ability to pass the tests. As before, the 
Op will be called random effects, and will be assumed to be normaly distrib­
uted with mean zero. A graphical representation of this model is given in 
Figure 4.2. As for the linear model, person-specific slopes could have been 
included as weIl. 

A general formulation is as follows. Conditionally on random effects 8p , 

it is assumed that the elements Ypi of Y p are independent, with density 
function of an exponential family form 

with a and c functions and cp an overdispersion parameter, with 'T]pi as 
the canonical or natural parameter and further with mean E(Ypi I8p) = 
a'('T]pi) = /-Lpi(8p) and variance Var(Ypi I8p ) = cpa"('T]pi). If 

(4.7) 

then a,-I is the canonicallink function. The link function flink is canonical 
if it maps the mean into a parameter that is both the canonical parameter 
and a linear function of the covariates as in Equation 4.7. 

The random effects 8p are assumed to follow 

(4.8) 

UsuaIly, the canonicallink function is used, i.e., flink = a,-I. For binomial 
data, the logit link is canonical, but the pro bit link is not. For Poisson data, 
the log link is canonical. Note that the linear mixed model is a special case, 
with an identity link function. The advantage of a canonical link is that 
it results in a simplified form for the score equations for which, in many 
cases, fast and stable fitting algorithms can be constructed. 

4.4 Interpretation of regression parameters in 
mixed models 

The common aspect in the mixed models introduced in Section 4.3.2 is 
the fact that all these models can be interpreted as person-specific statis­
tical models for the outcome Y which contain person-specific parameters, 
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and therefore require an interpretation conditionally on the person. More 
specifically, the vector ß of regression parameters needs to be interpreted 
conditionally on the random effect Op- This can be indicated explicitly using 
the notation ßRE. In many practical situations however, one is interested in 
studying 'average outcomes,' such as average success probabilities, and how 
these averages depend on known covariates. In general, such population­
averaged profiles can be obtained from fitting marginal models such as the 
ones described in Section 4.2.1. These models could, in principle, contain 
the same covariates X p, and the corresponding vector ßM of regression 
parameters would have a marginal interpretation. It should be strongly 
emphasized that, except in very specific cases, ßRE and ßM are not iden­
tical, and have a different interpretation. This will be furt her explained in 
the following sections, for linear, nonlinear, and generalized linear mixed 
models, respectively. 

4.4.1 Linear mixed models 

As discussed before, the linear mixed model can be interpreted as a linear 
regression model for the vector Y p of repeated observations for each unit 
separately, where some of the regression parameters are specific to the 
individual (random effects, Op), while others are not (fixed effects, ß). Note 
that the assumption E(Op) = 0 implies that the mean of Y p still equals 
X pß, such that the fixed effects in the random-effects model of Equation 
4.3 can also be interpreted marginally. Hence, in this case, ßRE = ßM. 

This is a very important and useful property in the linear mixed model 
setting, that does not carry over to more general, nonlinear settings. Thus, 
in this context, not only do the fixed effects reflect the effect of changing 
covariates within specific units (within individuals), they also measure the 
marginal effect in the population of changing the same covariates. 

4.4.2 Nonlinear mixed models 

While general nonlinear models (including models for continuous out comes ) 
are somewhat outside of the scope of this volume, we believe it is useful to 
briefly sketch a general nonlinear framework for mixed models, from which 
generalized linear mixed models can be derived as a special but important 
case (Section 4.4.3). 

Thus, let us consider the marginal ('average') evolution of a continuous 
outcome Y, modeled through a nonlinear mixed model. Let fp(YpIBp) and 
g(Bp ) denote the density functions corresponding to the distributions Fp 

and C, respectively; then we have that the average response is given by 

E(Yp ) 
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which, in general, is not of the form fl:t(Xp,Zp,ß,O), but rather inte­
grates the random effects from fl:t (X p, Z p, ß, 8 p). Hence, the vector ßRE 
of regression parameters in the nonlinear mixed model will, in general, not 
have a marginal interpretation, and thus will be different from ßM. 

4.4.3 Generalized linear mixed models 

Because most generalized linear mixed models involve nonlinear link func­
tions fUnk' we have that, in general, the regression parameters cannot be 
marginally interpreted. We will illustrate this for the case of the logistic 
GLMM. We again refer to Figure 4.2 for the graphical representation. Using 
the logit link, the average conditional on the random effects, equals 

The population averaged mean, implied by the above generalized linear 
mixed model, is obtained from integrating over the random effects: 

E ( exp(Xpß + Z p8p) ) 
1 + exp(Xpß + Z p8p) 

exp(Xpß) 
1 + exp(Xpß)' 

Note that the implied population average is not of a logistic form any more. 
In general, 

for an arbitrary link function fUnk('), except for specific cases such as 
the identity link, the population-averaged (ßM) and person-specific (ßRE) 
fixed effects are not identical. As discussed by Neuhaus, Kalbfleisch, and 
Hauck (1991), the parameter estimates obtained from fitting the logistic 
mixed model are typically larger in absolute value than their marginal 
counterparts that would be obtained from fitting a marginal model with 
mean model 

However, one should not refer to this phenomenon as bias since the two 
sets of parameters target different scientific questions. Nevertheless, in some 
cases an approximate relationship can be derived between the marginal and 
random-effects model parameters. 

Consider the specific case of the binomial model for binary data, with the 
logit canonical link function, and where the only random effects are inter­
cepts Bp. As before, let ßRE represent the vector of regression parameters 
in the mixed model. It can then be shown that the implied marginal mean 
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J-Lp = E(Yp ) (Yp is the vector of Y p1 to YPI) satisfies !link(J-Lp ) ~ XpßM 

with 

(4.9) 

in which c equals 16V3/151f. Hence, although the parameters ß in the 
generalized linear mixed model have no marginal interpretation, they do 
show a strong relation to their marginal counterparts. Note that indeed, 
we obtain marginal parameters which are smaller in absolute value than 
the mixed model counterparts, with larger differences for larger random­
intercepts variances. In Figure 4.2, this is refiected in the less steep increase 
in the population-averaged evolution when compared to all person-specific 
evolutions. 

This discussion points to the need to carefully refiect on the choice of (a) 
the model for the responses and (b) the distribution of the random effects. 
It is perhaps fair to say that the choice for a logistic model with normally 
distributed random effects is based, to a large extent, on the combination of 
the familiar logistic model with elements of the linear mixed-effects model. 
However, some of the nice properties of the logistic model do not carry 
over to the random-effects setting. Indeed, it is important to understand 
the main differences between the linear mixed model and the nonlinear 
or generalized linear mixed models, particularly in the case of the logis­
tic type. In the first case, all properties of the normal distribution can be 
invoked, while in the second case one typically resorts to the exponential 
family. In the normal distribution, there is no mean-variance link, while 
such a link plays a prominent role in most exponential family models. In 
addition, the link function is linear in the first case and usually nonlinear in 
the second case. In the linear mixed model case, the sources of variability 
all enter the same linear predictor as additive terms. However, there is no 
additive relationship between them in other settings. To see this, consider 
the logistic model. An outcome can be written, with obvious notation, as 
Ypi = J-lpi + cpi· Thus, while the measurement error is connected linearly 
to the outcome, the random-effects variability enters nonlinearly since the 
linear predictor is coupled to the mean J-lpi via the link function. Thus, not 
only is model fitting different, but also a number of interpretational differ­
ences follow, including a different meaning for the regression parameters in 
both types of models. Note that, unlike the univariate case, there are im­
portant qualitative differences between mixed models with a logit link on 
the one hand and with a pro bit link on the other hand. Indeed, integrating 
a probit mixed modelover normally distributed random effects still leads 
to a (often high-dimensional) probit model. Thus, choosing a pro bit link 
renders the connection between the hierarchical and marginal form more 
transparent. 
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4.5 Fitting mixed models 

In general, unless a fully Bayesian approach is followed (see, e.g., Gelman, 
Carlin, Stern, & Rubin, 1995), inference is based on the marginalized model 
for Y p which is obtained from integrating out the random effects, over their 
distribution G ( 'IjJ ). Then we have that the marginal density function of Y p 

equals 

!p(Yp) = J !p(YpIOp)g(Op)dOp, (4.10) 

which depends on the unknown parameters e (in Fp ) and 'IjJ (in G). As­

suming independence of the units, estimates e and :;j; can be obtained from 
maximizing the likelihood function built from Equation 4.10, and inferences 
immediately follow from classical maximum likelihood theory. 

Depending on Fp and G, the integration in Equation 4.10 may or may 
not be possible analytically. Proposed solutions are based on Taylor series 
expansions of !p(YpIOp), or on numerical approximations of the integral, 
such as (adaptive) Gaussian quadrature, or on the EM algorithm (Demp­
ster, Laird, & Rubin, 1977). Some of these techniques will be discussed 
furt her in this section. 

Even when one would usually be primarily interested in estimating the 
parameters in the marginal model, it is often useful to calculate estimates 
for the random effects Op as well. They reflect between-person variability, 
which makes them helpful for detecting special profiles (i.e., outlying indi­
viduals) or groups of individuals showing extraordinary behavior. They are 
especially meaningful in the measurement context of psychometrics. Also, 
estimates for the random effects are needed whenever interest is in person­
specific predictions. Inference for the random effects is often based on their 
so-called posterior distribution !p(OpIYp), given by 

(4.11) 

in which the unknown parameters e and 'IjJ are replaced by their estimates 
obtained earlier from maximizing the marginal likelihood. The mean or 
mode corresponding to Equation 4.11 can be used as point estimates for 
Op, yielding the so-called empirical Bayes (EB) estimate. 

It should be emphasized that, although the likelihood corresponding to 
the implied marginal distribution in Equation 4.10 is maximized, no mar­
ginal model, as introduced in Section 4.2.1, is fitted, since the model is 
still formulated in terms of parameters that have a hierarchical interpreta­
tion. Hence the resulting estimates for the regression parameters have no 
population-averaged interpretation. The parameters in the marginal model 
are still those from the original mixed model, and hence can only be inter­
preted conditionally on the random effects in the model. 



128 Geert Molenberghs, Geert Verbeke 

In the remainder of this chapter, we will discuss how the marginal like­
lihood constructed from Equation 4.10 is maximized in practice, for linear 
mixed models and for nonlinear and generalized linear mixed models, re­
spectively. Note that a wide number of different algorithms have been pro­
posed, many of which are based on approximations. Consequently, some­
times substantial differences can be observed when the same model is fitted 
to the same data, but by way of a different maximization approach. We 
will hereby restrict ourselves to the case of normally distributed random 
effects Op with mean zero and covariance matrix ~. The parameters in 
Equation 4.10 are then the regression parameters ß on one hand, and the 
scale parameter <p as in Equation 4.6 and the elements in ~ on the other 
hand. This last set of parameters will be combined into the vector A of 
so-called variance components. 

4.5.1 Linear mixed models 

From a computational point of view, the main difference between the linear 
mixed model and the nonlinear or the generalized linear mixed model is that 
the marginal distribution Equation 4.10 can easily be derived analytically. 
Indeed, it immediately follows from Equation 4.3 and Equation 4.4 that, 
marginally, Y p follows the normal distribution 

( 4.12) 

Hence, another multivariate linear regression model is obtained. The mean 
vector equals X pß, which again shows that the regression parameters in the 
mixed model also have a marginal interpretation. The covariance matrix 
V p has a very simple parametrization, with the parameters in ~ and 0 as 
unknown parameters. 

Conditionally on A, the maximum likelihood (ML) estimate for ß equals 

which is normally distributed with mean ß and covariance matrix (Lp X~ 

V;l Xp)-l. This can be used to construct Wald-type tests. In practice, 
however, A is not known and has to be replaced by an estimate. In or­
der to take into account the variability introduced by estimating the vari­
ance components, the chi-squared reference distribution is often replaced 
by an approximate F-distribution, with the usual numerator degrees of 
freedom. The denominator degrees of freedom need to be estimated from 
the data. This is often based on so-called Satterthwaite-type approxima­
tions (Satterthwaite, 1941). We refer to Verbeke and Molenberghs (1997; 
Section 3.5.2 and Appendix A) for a detailed discussion on this. Kenward 
and Roger (1997) proposed a scaled Wald statistic, based on an adjusted 
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covariance estimate which accounts for the extra variability introduced by 
estimating A, and they show that its small sampie distribution can be weIl 
approximated by an F -distribution with denominator degrees of freedom 
also obtained via a Satterthwaite-type approximation. In general, the dif­
ferent methods usually lead to different results. However, unless in models 
with crossed random effects (with random person as weIl as random item 
parameters), the data consist of independent blocks of information, re­
sulting in numbers of denominator degrees of freedom which are typically 
large enough, whatever estimation method is used, to lead to very similar 
p-values. Only for very small sampies, or when linear mixed models are 
used with random person parameters as weIl as random item parameters, 
different estimation methods for degrees of freedom may lead to severe 
differences in the resulting p-values. 

Estimation of A can be based on the maximum likelihood principle as 
weIl. In practice, however, one usually uses restricted maximum likelihood 
(REML) estimation (Harville, 1974), which allows one to estimate the co­
variance parameters without having to estimate the mean X ß first. The 
rationale for using REML is a reduction and in some cases removal of finite­
sampie bias, present in the estimation of variance components when using 
maximum likelihood, due to the fact that degrees of freedom are spent on 
the estimation of mean parameters. The basic idea is that the vector Y 
of all responses Ypi is transformed to a vector U = A'Y of so-called er­
ror contrasts, where A is chosen such that its columns are orthogonal to 
the design space construced from the design matrices X p. The distribution 
of U no longer depends on ß, while the variance components in A can 
now be estimated maximizing the likelihood of these error contrasts. This 
yields the so-called REML estimate for A. It is known from simpler mod­
els, such as linear regression models, that this provides better estimates 
than the classical maximum likelihood method. We refer to Verbeke and 
Molenberghs (2000; Section 5.3) for more details on REML estimation and 
for a comparison between REML and ML estimation. Inference about the 
variance components in A is usually based on the asymptotic properties 
of maximum likelihood estimates, or more specifically on asymptotic Wald 
tests, likelihood-ratio tests, or score tests. We refer to Verbeke and Molen­
berghs (2000; Chapter 6,2003) for a detailed discussion on issues for testing 
variance components. 

4.5.2 Nonlinear and generalized linear mixed models 

In contrast to the case of the linear mixed model, the marginal distribu­
tion in Equation 4.10 can no longer be derived analytically, in this general 
situation. In this section, we will briefly discuss ways to handle this issue. 
A more extensive discussion can be found in Chapter 12. First, abrief 
summary will be given of how Bayesian methods apply in this context. 
Afterwards, alternative methods will be discussed, distinguishing between 



130 Geert Molenberghs, Geert Verbeke 

approximations to the integrand, and methods based on approximations 
to the integral. A useful reference on estimation methods is Lavergne and 
Trottier (2000). Pinheiro and Bates (1995) discuss connections between 
both families to deal with the integral. In contrast to the linear mixed 
model, inference under nonlinear or generalized linear mixed models has 
been worked out in much less detail in the statistical literature. It is usu­
ally based on the asymptotic properties of maximum likelihood estimates, 
leading to asymptotic Wald-type tests. 

Bayesian methods 

The need for numerical integration can be avoided by casting the gen­
eralized linear random-effects model into a Bayesian framework and by 
resorting to the Gibbs sampIer (Zeger & Karim, 1991). 

In Bayesian generalized linear mixed models one also starts from Equa­
tions 4.6 to 4.8. In addition, there is the need to select prior distributions for 
ß and A. For ß, one commonly chooses either normal distributions or flat, 
noninformative priors. Standard noninformative priors for elements in A 
are Jeffreys priors (Zeger & Karim, 1991). Fahrmeir and Tutz (2001) report 
that such choices can lead to improper posteriors (see also Hobert & Casella 
1996). Besag, Green, Higdon, and Mengersen (1995) proposed the use of 
proper but highly dispersed inverted Wishart priors for the random-effects 
covariance matrix ~, i.e., ~ rv IWr (::::, W), where the hyperparameters :::: 
and W have to be selected very carefully. Under conditional independence, 
and assuming prior independence of ß and A, the posterior distribution 
can be expressed as 

P I P 

f(ß, A, 01, ... , OpIY) oe rr rr f(YpiIß, A, Op) rr f(OpIA)f(A)f(ß). 
p=l i=l p=l 

Full conditionals for the fixed effects ß, the random effects Op, and the vari­
ance components A often take simple forms and standard algorithms can 
be used for drawing sampIes from the posterior distribution (Ripley, 1987). 
Zeger and Karim (1991) used Gibbs sampling with rejection sampling for 
the fixed and random effects. Gamerman (1997) proposed a more efficient 
algorithm, exploiting the computational advantage of one-step Fisher scor­
ing. A number of authors have considered alternatives to Gaussian random 
effects for a Bayesian approach such as, for example, scale mixtures of nor­
mals (Besag, et al. , 1995; Knorr-Held, 1997). An introduction to Bayesian 
methods and an application for probit item response models can be found 
in Chapter 6. 

Approximation of the integrand 

Breslow and Clayton (1993) exploit the penalized quasi-likelihood (PQL) 
estimator by applying Laplace's method for integral approximation. They 
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also consider marginal quasi-likelihood (MQL), a name they give to a pro­
cedure previously proposed by Goldstein (1991). These two approaches 
entail iterative fitting of linear models based on first-order Taylor expan­
sions of the mean function about the current estimated fixed part predic­
tor (MQL) or the current predicted value (PQL). The method proposed 
by Gilmour, Anderson, and Rae (1985) has seen some use as well. Wolfin­
ger and O'Connell (1993) proposed a variation on this theme based on 
iteratively fitting linear mixed models to an approximately chosen work­
ing variate. They termed their procedures pseudo-likelihood and restricted 
pseudo-likelihood. 

As Rodrfguez and Goldman (1995) demonstrate, the approximate pro­
cedures PQL and MQL, proposed by Breslow and Clayton (1993), may 
be seriously biased when applied to binary response data. Their simula­
tions reveal that both fixed effects and variance components may suffer 
from substantial, if not severe, attenuation bias in certain situations which 
we will discuss at the end of this section. Goldstein and Rasbash (1996) 
show that including a second-order term in the PQL expansion (yield­
ing PQL2) greatly reduces the bias described by Rodrfguez and Goldman. 
Other authors have advised the introduction of bias-correction terms (Lin 
& Breslow, 1996) or the use of iterative bootstrap (Kuk, 1995). 

Goldstein (1986) proposed iterative generalized least squares (IGLS). His 
algorithm simply iterates between the estimation of the fixed and random 
parameters obtained by standard generalized least squares formulae, hence 
its name. The attraction of IGLS lies in its efficiency with large data sets. 
Note that the IGLS algorithm can be slightly modified (RIGLS) to perform 
similarly to residual (or restricted) maximum likelihood estimation, which 
yields unbiased estimates far variance components in random-effects models 
(Verbeke & Molenberghs, 2000). It should be noted that the properties of 
RIGLS, in contrast to REML, are not well understood. 

The approach proposed by Wolfinger and O'Connell (1993) is based on 
an extension of the method of Neider and Wedderburn (1972) (see also 
McCullagh & Neider, 1989) to fit fixed-effects generalized linear models. 
Let us briefly recall this procedure. Dropping the person-specific index p, 
the basic form of a generalized linear model is "1 = Xß, where "1 = flink(p'), 
p, = E(Y) and flink is an appropriate link function. Neider and Wedderburn 
(1972) showed that maximum likelihood estimates for ß can be obtained 
using 'working' dependent variables y*, which are linearized versions of 
the y (McCullagh & Neider, 1989). Wolfinger and O'Connell's method (see 
also Schall, 1991; and Breslow & Clayton, 1993) is implemented in the SAS 
macro GLIMMIX. 

The approach is known to have some drawbacks such as, far example, 
downward biases in fixed-effects and covariance parameters. This issue will 
be taken up in the next section. The estimation procedure is based on 
iterating between the computation of working dependent variables on the 
one hand and fitting a linear mixed model to it on the other hand. The 
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explicit steps of the algorithm can be found in, for example, Aerts et al. 
(2002). 

Roughly speaking, the methods discussed so far are based on the approx­
imation of the integrand I1 i fp(YPiI6p) by anormal density such that the 
integral can be calculated analytically, as in the normal linear model. As 
an example, consider the generalized linear mixed models with canonical 
link, where this integrand is 

exp (~c/>-l(YPi17Pi - a(17pi)) + ~C(YPi'c/») 

exp (c/>-l (ß1 ~ XpiYpi + 6~ ~ ZpiYpi - a(17Pi)) + ~ C(Ypi, c/») . 

The sufficient statistics for ß and 6p are Ei XpiYpi and Ei ZpiYpi, respec­
tively. Hence, the approximation will be accurate whenever these sufficient 
statistics are approximately normally distributed, which means that re­
sponses Ypi are 'sufficiently continuous' and/or if I is sufficiently large. 
This explains why the approximation methods perform poorly in cases with 
binary repeated observations, with a relatively small number of repeated 
observations available for all persons (Wolfinger, 1998). 

Approximation of the integral 

Especially in cases where the above approximation methods for the inte­
grand will fail, approximations to the integral (Le., numerical integration) 
prove to be very useful. Of course, a wide toolkit of numerical integration 
tools, available from the optimization literat ure, can be applied. Several of 
those have been used in such software tools as the NLMIXED procedure in 
SAS and the MIXOR program. A general dass of quadrature rules selects a 
set of abscissas and constructs a weighted sum of function evaluations over 
those. In the particular context of random-effects distributions, so-called 
adaptive quadrature rules can be used (pinheiro & Bates, 2000), where the 
numerical integration is centered around the EB estimates of the random 
effects, and the number of quadrat ure points is then selected in terms of 
the desired accuracy. 

To illustrate the main ideas, we consider Gaussian and adaptive Gaussian 
quadrature, as implemented in the SAS procedure NLMIXED. For ease of 
notation, it is also assumed that the model has been reparametrized such 
that the random effects 6p have a unit covariance matrix. The likelihood 
contribution for person p then is given in Equation 4.13, with the density 
of the (multivariate) standard normal distribution denoted by cp(.). Note 
that one integral evaluation per independent unit is necessary, since not 
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only the common function r.p but also the person-specific functions jp are 
used in the integration. 

Gaussian as weIl as adaptive Gaussian quadrat ure are based on the re­
placement of the integral by a weighted sum 

J j(z)r.p(z)dz 
M 

~ L wmj(zm). 
m=l 

(4.13) 

M is the order of the approximation. The higher M the more accurate the 
approximation will be. Further , the so-caIled nodes (or quadrature points) 
Zm are solutions to the Mth-order Hermite polynomial, while the W m are 
weIl-chosen weights. The no des Zm and weights W m are reported in tables. 
Alternatively, an algorithm is available for calculating aIl Zm and W m for 
any value M (Press, Teukolsky, Vetterling, & Flannery, 1992). 
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FIGURE 4.3. Graphical illustration of Gaussian (left window) and adaptive 
Gaussian (right window) quadrature of order M = 10. The black triangles in­
dicate the position of the quadrat ure points, while the rectangles indicate the 
contribution of each point to the integral. 

In the case of univariate integration, the approximation consists of subdi­
viding the integration region into intervals, and approximating the surface 
under the integrand by the sum of surfaces of the so-obtained approximat­
ing rectangles. An example is given in the left-hand window of Figure 4.3, 
for the case of M = 10 quadrat ure points. A similar interpretation is pos­
sible for the approximation of multivariate integrals. 
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Note that the figure immediately highlights one of the main disadvan­
tages of (nonadaptive) Gaussian quadrature, which is that the quadrature 
points Zm are chosen based on <p(z), independent of the function j(z) in 
the integrand. Depending on the support of j(z), the Zm will or will not 
lie in the region of interest. Indeed, the quadrature points are selected to 
perform weIl in case j(z)<p(z) approximately behaves like <p(z), and thus, 
like a standard normal density function. This will be the case, for example, 
if j(z) is a polynomial of a sufficiently low order. In our applications how­
ever, the function j (z) will take the form of a density from the exponential 
family, hence an exponential function. It may then be helpful to rescale 
and shift the quadrature points such that more quadrature points lie in the 
region of interest. This is shown in the right hand window of Figure 4.3, 
and is thus caIled adaptive Gaussian quadrature. 

With adaptive Gaussian quadrature, the quadrature points are centered 
and scaled based on j(z)<p(z) as if it were a normal distribution (see the 
right window in Figure 4.3), and not based on <p(z) (as in the left window in 
Figure 4.3). The mean of this normal distribution would be the mode Z of 

ln(f(z)<p(z)), while the variance would equal ( - t:2In(f(z)<p(z))lz=J -1. 

Note that, when Gaussian or adaptive Gaussian quadrat ure is used in the 
fitting of generalized linear mixed models, an approximation as in Equation 
4.13 is applied to the likelihood contribution of each of the P units in the 
data set. In general, the higher the order M, the better the approximation 
will be of the P integrals in the likelihood. TypicaIly, adaptive Gaussian 
quadrature needs (much) fewer quadrature points than classical Gaussian 
quadrature. On the other hand, adaptive Gaussian quadrature requires for 
each unit the numerical maximization of a function oft he form ln(f(z)<p(z)) 
for the calculation of Z. This implies that adaptive Gaussian quadrature 
is much more time consuming. Moreover, as these functions ln(f(z)<p(z)) 
depend on the unknown parameters ß, ~ and rp, the quadrature points, 
as weIl as weights used in adaptive Gaussian quadrature, depend on those 
parameters, such that maximizing the approximate likelihood 

also requires calculation of first-order and second-order derivatives of the 
quadrat ure points and weights. This again may increase the calculation 
times considerably. 

4.6 Inference in generalized linear mixed models 

Since fitting of generalized linear mixed models is based on maximum like­
lihood principles, inferences for the parameters are readily obtained from 
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classical maximum likelihood theory. Indeed, assuming the fit ted model is 
appropriate, the obtained estimators are asymptotically normally distrib­
uted with the correct values as means, and with the inverse Fisher infor­
mation matrix as covariance matrix. Hence, Wald-type tests, comparing 
standardized estimates to the standard normal distribution can be easily 
performed. Composite hypotheses can be tested using the more general 
formulation of the Wald statistic which is a standardized quadratic form, 
to be compared to the chi-squared distribution. 

4· 6.1 Inference for fixed effects 

In many software packages, standard errors for the regression coefficients 
in ß are obtained from inverting only that part of the Hessian matrix 
that refers to ß, omitting the part corresponding to A. This is especially 
the case for linear mixed models where analytic expressions are available 
for ß as weIl as for the associated standard errors, but not for the esti­
mates or standard errors of A. This way, the standard errors used in the 
Wald tests for elements in ß are typically too smaIl, since they ignore the 
variability introduced in the estimation of ß that results from replacing 
the unknown variance components in A by their estimates. Therefore, the 
standard normal reference distribution is often replaced by a t distribu­
tion, in an attempt to refiect the additional uncertainty in the estimates. 
In case of composite hypotheses, the chi-squared reference distribution is 
then replaced by an F -distribution, with the same numerator degrees of 
freedom as the original chi-squared distribution. The denominator degrees 
of freedom need to be estimated from the data. This is often based on 
so-called Satterthwaite-type approximations (Satterthwaite, 1941), and is 
only fully developed for the case of linear mixed models. We refer to Ver­
beke and Molenberghs (2000, Section 6.2) for more information on this 
aspect. However, in most applications considered in this volume, different 
persons contribute independent information, which results in numbers of 
denominator degrees of freedom which are typically large enough, whatever 
estimation method is used, to lead to very similar p-values. Only for very 
small sampies, or when mixed models would be used with crossed random 
effects (random effects for persons as weIl as for items) different estima­
tion methods for degrees of freedom may lead to severe differences in the 
resulting p-values. 

Further, apart from the Wald-type inferential procedures, one can also 
apply likelihood ratio (LR) tests or score tests for the comparison of nested 
generalized linear mixed models. 

4.6.2 Inference for variance components 

If one wishes to interpret ~ as the covariance matrix of the underlying 
random effects, it should be estimated under the restriction of non-negative 
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definiteness. Many of the null hypotheses about the variance components, 
of interest in practice, are then on the boundary of the parameter space. 
This implies that the classical maximum likelihood theory no longer applies, 
and that none of the above described classical testing procedures remain 
valid. A typical example is the test for the need of a specific random effect. 
Consider a model as in Section 4.3.2 with random intercepts and slopes, 
and the hypothesis of interest is that no random slopes are needed. Under 
the alternative hypothesis, :E is a two by two non-negative definite matrix, 
which reduces to a non-negative scalar under the null hypothesis. Clearly, 
the null hypothesis is on the boundary of the alternative parameter space 
as it requires the random-slopes variance to be zero. Stram and Lee (1994, 
1995) have shown that, in this case, the asymptotic null distribution for 
the likelihood-ratio test statistic is a mixt ure ofaxi and a x§, with equal 
prob ability 1/2, rather than the standard X§ one would expect under the 
classical likelihood theory. In general, the asymptotic null distribution for 
the likelihood-ratio test statistic for testing a null hypothesis which allows 
for J correlated random effects versus an alternative of J + 1 correlated 
random effects, is a mixt ure ofaX} and a X}+l' with equal prob ability 1/2. 
For more general settings, e.g., comparing models with J and J +q' (q' > 1) 
random effects, the null distribution is a mixture of X2 random variables 
(Shapiro, 1988; Raubertas, Lee, & Nordheim, 1986), the weights of which 
can only be calculated analytically in a number of special cases. Similar 
results can be derived for the score test. Building upon Silvapulle and 
Silvapulle (1995) and Shapiro (1988), Verbeke and Molenberghs (2003) have 
shown that the score test is asymptotically equivalent to the likelihood­
ratio test, and that the same mixtures of chi-squared distributions appear 
as asymptotic null distributions. 

4.6.3 M arginal/hierarchical models versus 
marginal/hierarchical inference 

A graphical overview of the available modeling and inferential options is 
given in Figure 4.4. As extensively discussed before, item response data can 
be modeled using marginal models, as weIl as hierarchical (random-effects) 
models, leading to regression parameters ßM and ßRE, respectively, with 
a different interpretation. This corresponds to the left and right branch in 
Figure 4.4, respectively. It should be emphasized that, although estimation 
and inference for generalized linear mixed models is based on the marginal 
likelihood obtained from integrating over the person-specific parameters, 
the obtained parameter estimates for the regression coefficients retain their 
hierarchical interpretation and therefore are estimates of ßRE, rather than 
of ßM. 

Where a marginal model is considered, as in the left-hand branch of 
Figure 4.4, the inference can be based on full likelihood methods as weIl 
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FIGURE 4.4. Representation of model families and corresponding inference. A su­
perscript 'M' stands for marginal, 'RE' for random effects. A parameter between 
quotes indicates that marginal functions but no direct marginal parameters are 
obtained, since they result from integrating out the random effects from the fitted 
hierarchical model. 

as on generalized estimating equations. Of course, GEE only models and 
estimates first-order marginal parameters, while full likelihood methods 
specify all higher-order marginal parameters as well. 

When a random-effects model is considered, as in the right-hand branch 
of Figure 4.4, the most natural inference to make is a hierarchical one (based 
on the random effects), but one can still also make marginal inferences. The 
marginal mean profile can be derived from E(Yp ) = E(E(Yp I8p )), where 
the inner expectation immediately follows from the posited hierarchical 
model. In practice, the outer expectation can be obtained, for example, by 
numerical integration (i.e., Gaussian quadrature) or by simulation methods. 
Note however that it will generally not produce a simple parametric form. 
In Figure 4.4 this is indicated by putting the corresponding parameter 
between quotes. In general, the matrix ~ does not need to be positive 
definite in order to obtain a valid marginal model. For example, in the linear 
mixed model case, a valid model as in Equation 4.12 is obtained whenever 
the marginal covariance V p is positive definite. Of course, in the case of 
non-positive definite ~, the marginal model can no longer be believed to 
be derived from an underlying hierarchical random-effects structure. In 
principle, similar arguments hold in mixed models in general. This implies 
that, even within the random-effects model, inference can be drawn with 
or without giving the model a hierarchical interpretation, and thus, with 
or without the additional restrictions on the variance components. 
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4.6.4 Model camparisan 

Comparing non-nested models is often done based on so-called information 
criteria, the main idea behind which is to compare models based on their 
maximized log-likelihood value, but to penalize for the use of too many 
parameters. More specifically, let C be the maximized log-likelihood and let 
F( #ß, #>.) be any monotone function of the number of fixed weight para­
meters and the number ofvariance components, then C-F(#ß, #>.) defines 
an information criterion which can be used to discriminate between differ­
ent statistical models. The model with the largest penalized log-likelihood 
value is then deemed best. Depending on the exact form of F, different 
criteria are obtained. The most frequently used ones are the Akaike (AIC; 
Akaike, 1974) and the Schwarz (EIC; Schwarz, 1978) criterion, defined by 
F(#ß, #>.) = #ß + #>. and F(#ß, #>.) = (#ß + #>')(logn)/2 in which 
n is the number of observations. In an item response context often the 
number of persons is used as the effective number of observations. In the 
multilevel literature the number of higher level units is commonly used for 
n (Goldstein, 2003), which is in line with the previous. This interpretation 
is followed for example in the SAS procedure NLMIXED. For a discussion, 
see Raftery (1995). Note that, in contrast to AIC, EIC involves the sample 
size, implying that differences in likelihood need to be viewed, not only 
relative to the differences in numbers of parameters but also relative to 
the number of observations included in the analysis. As the sample size 
increases, more drastic increases in likelihood are required before a com­
plex model will be preferred over a simple model. This means that, when 
compared to BIC, AIC tends to favor more complex models. 

4.7 Case study: onychomycosis data 

In this section, we will focus (a) on differences between a marginal and a 
random-effects model and (b) on the comparison of Gaussian and adaptive 
Gaussian quadrature, with special attention to the selection of the number 
of quadrature points in the approximation. The context is a randomized, 
double-blind, parallel group, multicenter study, for the comparison of two 
oral treatments for toenail dermatophyte onychomycosis. Patients with a 
clinical diagnosis of toe onychomycosis confirmed by a positive direct mi­
croscopy and a positive culture for dermatophyt es at a central laboratory 
were randomly assigned to treatment A or treatment B. After a treatment 
period of 12 weeks, there was a follow-up period of 36 weeks. Patients re­
turned to the hospital at months 0 (baseline), 1, 2, 3, 6, 9, and 12. More 
details can be found in De Backer et al., (1998). One of the out comes ob­
served at each occasion was the severity of the infection, coded as 0 (not 
severe) or 1 (severe). The quest ion of interest was whether the rate of severe 
infections decreased over time, and whether that evolution was different for 
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FIGDRE 4.5. Frequencies of patients with severe and non-severe onychomycosis, 
at 7 occasions (onychomycosis data). 

the two treatment groups. The overall (both treatments together) evolution 
of severity is shown in Figure 4.5. Although 189 patients were initially in­
cluded in each group, only 118 patients from group A and 108 patients from 
group B completed the study. However, we will for now ignore this dropout 
problem, and we refer to Verbeke and Molenberghs (2000) for an extensive 
discussion on dropout, and on missing data in general. As before, let Ypi 
denote the outcome for person p, measured at time tpi = ti. Note that the 
items refer here to different visits over time. The seven observations made 
over time have a status similar to seven items. 

4.7.1 Random-effects model versus marginal model 

Table 4.1 displays parameter estimates (standard errors) for a random­
effects model and a marginal model. The marginal model parameters are 
obtained using generalized estimating equations, where a marginal logit 
function is combined with unstructured working assumptions. The working 
correlation matrix is seven by seven, and not assumed to be of any specific 
parametrie form. We assume a random-intercepts model of the logistic type, 
with normally distributed random effects: 

P ( ~7 . _ 11'7' t . B ) _ exp(ßo + Bp + ß1Tp + ß2 tpi + ß3Tptpi) 
r I pt - .L p, pt, P - (ß B ß '7' ß ß '7' ) , 1 + exp 0 + p + Pp + 2tpi + 3.L ptpi 

(4.14) 

where t pi is the time at which measurement on person p is taken, Tp 
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TABLE 4.1. Parameter estimates (standard errors) for a generalized linear mixed 
model (GLMM) and a marginal model (GEE), as weIl as the ratio between both 
sets of parameters (onychomycosis data). 

GLMM GEE 

Parameter Estimate (SE) Estimate (SE) Ratio 

Intercept group A -1.63 (.44) -.72 (.17) 2.26 
Intercept group B -1.75 (.45) -.65 (.17) 2.69 
Slope group A -.40 (.05) -.14 (.03) 2.87 
Slope group B -.57 (.06) -.25 (.04) 2.22 

S Drandom intercept 4.02 

equals zero for a person with treatment A and one for a person with treat­
ment B. The random intercepts Bp are assumed normal with mean 0 and 
variance al The results reported in Table 4.1 have been obtained using 
adaptive Gaussian quadrature with 50 quadrature points. The marginal 
model has the same form as Equation 4.14, except there is, of course, no 
random intercept. More specifically, the following marginallogistic model 
is assumed: 

P (1':. = 11'T t . B ) = E ( exp(ßo + Bp + ß1Tp + ß2 t pi + ß3Tp t pi) ) 
r pt p, pt, P 1 + exp(ßo + Bp + ß1Tp + ß2 t pi + ß3Tp t pi) , 

where the expectation is taken over the random intercept Bp • 

There is a huge difference between the parameter estimates for both 
model families. However, the ratio between both sets, indicated in the last 
column of Table 4.1 is weIl in line with what we should expect from Equa­
tion 4.9. In this case, the random effects variance estimate equals 16.16, 
yielding [c2Var(Bp ) + 1]1/2 = 2.56. In Figure 4.6 the marginal evolutions 
(obtained with GEE) are contrasted with the evolutions following from the 
random-effects model, given Bp = O. While such evolutions would be ex­
actly the same in the linear mixed model case, they are clearly different in 
our current setting. 

4.7.2 The impact of the quadrature method 

In order to investigate the accuracy of the numerical integration method, 
the model was refitted, for varying numbers of quadrat ure points, and for 
adaptive as weIl as nonadaptive Gaussian quadrature. All calculations were 
performed using the SAS procedure NLMIXED. The results have been sum­
marized in Table 4.2. First, it should be emphasized that each reported log­
likelihood value equals the maximum of the approximation to the model 
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log-likelihood, which implies that log-likelihoods corresponding to different 
estimation methods and/or different numbers of quadrature points are not 
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TABLE 4.2. Summary of parameter estimates and associated standard errors 
obtained from fitting the model of Equation 4.14, for varying numbers M of 
quadrat ure points, and for adaptive as weH as nonadaptive Gaussian quadrature. 
For each model the deviance (-2fi) is given (onychomycosis data). 

Gaussian quadrat ure 
M=3 M=5 M=lO M=20 M=50 

ßo -1.52 (.31) -2.49 (.39) -.99 (.32) -1.54 (.69) -1.65 (.43) 
ßl -.39 (.38) .19 (.36) .47 (.36) -.43 (.80) -.09 (.57) 
ß2 -.32 (.03) -.38 (.04) -.38 (.05) -.40 (.05) -.40 (.05) 
ß3 -.09 (.05) -.12 (.07) -.15 (.07) -.14 (.07) -.16 (.07) 
(J 2.26 (.12) 3.09 (.21) 4.53 (.39) 3.86 (.33) 4.04 (.39) 

-2C 1344.1 1259.6 1254.4 1249.6 1247.7 

Adaptive Gaussian quadrat ure 
M=3 M=5 M= 10 M=20 M=50 

ßo -2.05 (.59) -1.47 (.40) -1.65 (.45) -1.63 (.43) -1.63 (.44) 
ßl -.16 (.64) -.09 (.54) -.12 (.59) -.11 (.59) -.11 (.59) 
ß2 -.42 (.05) -.40 (.04) -.41 (.05) -.40 (.05) -.40 (.05) 
ß3 -.17 (.07) -.16 (.07) -.16 (.07) -.16 (.07) -.16 (.07) 
(J 4.51 (.62) 3.70 (.34) 4.07 (.43) 4.01 (.38) 4.02 (.38) 

-2C 1259.1 1257.1 1248.2 1247.8 1247.8 

necessarily comparable. Indeed, differences in log-likelihood values reflect 
differences in the quality of the numerical approximations, and thus higher 
log-likelihood values do not necessarily correspond to bett er approxima­
tions. Further, we find that different values for the number of quadrature 
points can lead to considerable differences in estimates as well as stan­
dard errors. For example, using nonadaptive quadrature, with M = 3, and 
looking at ß3, we found no difference in time effect between both treat­
ment groups (t = -.09/.05,p > .05). Using adaptive quadrature, with 
M = 50, this interaction between the time effect and the treatment was 
found to be statistically significant (t = -.16/.07, P < .05). Finally, ass um­
ing that M = 50 is sufficient, the 'final' results are well approximated with 
smaller M under adaptive quadrature, but not under nonadaptive quadra­
ture. With a small number of items, the risk is higher that nonadaptive 
quadrature performs less well than adaptive quadrature. 
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4.8 Missing data 

Whenever units are observed repeatedly, it is not unusual for some pro­
files to be incomplete. More often than not, it is necessary to address this 
problem in an explicit way. Early work on missing values was largely con­
cerned with algorithmic and computational solutions to the induced lack 
of balance or deviations from the intended study design (Afifi & Elashoff, 
1966; Hartley & Hocking, 1971). More recently, general algorithms such as 
expectation-maximization (EM) (Dempster, et al., 1977), and data imputa­
tion and augmentation procedures (Rubin, 1987), combined with powerful 
computing resources, have largely provided a solution to this aspect of 
the problem. There remains the very difficult and important question of 
assessing the impact of missing data on subsequent statistical inference. 

When referring to the missing-value, or non-response, process, we will 
use the terminology of Little and Rubin (1987, Chapter 6). A non-response 
process is said to be missing completely at random (MCAR) if the missing­
ness is independent of both observed and unobserved data. For example, 
dropout of patients may be related to factors that are unrelated to the 
observations. The non-response process is said to be missing at random 
(MAR) if, conditional on the observed data, the missingness is indepen­
dent of the unobserved data. For example, a patient's partially observed 
severity profile might be sufficient information to predict dropout. In other 
words, the unobserved portion of this patient's profile would not convey 
any additional information with respect to dropout. A process that is nei­
ther MCAR nor MAR is termed non-random (MNAR). For example, the 
missingness of income data may depend on the level of the income. In the 
context of likelihood inference, and when the parameters describing the ob­
servation process are functionally independent of the parameters describing 
the missingness process, MCAR and MAR are ignorable, while MNAR is 
non-ignorable. 

In many situations, missingness is dealt with by such simple techniques as 
complete case analysis (i.e., all patients with incomplete data are dropped 
from analysis) or simple forms of imputation (i.e., missing observations are 
filled in following a certain set of prescribed mIes). Such methods are seem­
ingly simple but suffer from major drawbacks. In particular, even the strong 
MCAR assumption will not guarantee that inference from simple imputa­
tion methods is valid. Under MAR, and hence a jortiori under MCAR, 
valid inference can be obtained through a likelihood-based analysis, with­
out the need for modeling the dropout process. As a consequence, one can 
simply use, for example, linear or generalized linear mixed models, with­
out additional complication or effort. We will argue that such an analysis 
not only enjoys much wider validity than the simple techniques such as 
complete case analysis and imputation but in addition is easy to conduct, 
without additional data manipulation. Hence, we only need software tools, 
such as the SAS procedure NLMIXED, which allow for units with unequal 
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numbers of observations. 
In realistic settings, the reasons for dropout are varied and it is therefore 

difficult to fully justify on apriori grounds the assumption of MAR. At first 
sight, this calls for a furt her shift towards MNAR models. However, some 
careful considerations have to be made, the most important one of which 
is that no modeling approach, whether MAR or MNAR, can re cover the 
lack of information that occurs due to incompleteness of the data. First, 
although it is only rarely that MAR is known to hold (Murray & Findlay, 
1988), ignorable analyses may provide reasonably stable results also when 
the assumption of MAR is violated, in the sense that such analyses con­
strain the behavior of the unseen data to be similar to that of the observed 
data. A discussion of this phenomenon in the survey context has been given 
in Rubin, Stern, and Vehovar (1995). These authors argue that, in weIl con­
ducted experiments (such as surveys and confirmatory clinical trials), the 
assumption of MAR is often to be regarded as a realistic one. Second, while 
MN AR models are more general and explicitly incorporate the missingness 
mechanism, the inferences they produce are typically highly dependent on 
the untestable and often implicit assumptions built in regarding the distrib­
ution of the unobserved measurements given the observed ones. The quality 
of the fit to the observed data need not reflect at all the appropriateness of 
the implied structure governing the unobserved data. This point is irrespec­
tive of the MNAR route taken, whether a parametric model of the type of 
Diggle and Kenward (1994) is chosen, or a semiparametric approach such 
as in Robins, Rotnitzky, and Zhao (1995). 

Rubin (1976) and Little and Rubin (1987) have shown that, under MAR 
and mild regularity conditions, likelihood-based inference is valid when the 
missing data mechanism is ignored (see also Verbeke & Molenberghs, 2000). 
Practically speaking, the likelihood of interest is then based upon the factor 
f(y~I()), where y~ is the vector of observed components for person p. This 
is called ignorability. 

The practical implication is that a software module with likelihood es­
timation facilities and with the ability to handle incompletely observed 
persons manipulates the correct likelihood, providing valid parameter es­
timates and likelihood ratio values. Of course, when at least part of the 
scientific interest is directed towards the non-response process, obviously 
both processes need to be considered. 

Even though the assumption of likelihood ignorability encompasses the 
MAR and not only the more stringent and often implausible MCAR mech­
anisms, it is difficult to exclude the option of a more general nonrandom 
dropout mechanism. Based on these considerations, we recommend, for 
primary analysis purposes, the use of ignorable likelihood-based methods. 
An alternative solution is to fit an MNAR model as proposed by Diggle 
and Kenward (1994). However, it has been reported repeatedly that such 
an approach is surrounded with difficulty (Verbeke & Molenberghs 2000, 
Chapter 18). A sensible compromise between blindly shifting to MNAR 
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models or ignoring them altogether is to make them a component of a 
sensitivity analysis (Verbeke & Molenberghs 2000, Chapter 18 to 20). In 
that sense, it is important to consider the effect on key parameters such as 
treatment effect. 

4.9 Framework extensions 

Among the clustered data settings, longitudinal data perhaps require the 
most elaborate modeling of the random variability, because they often show 
serial dependence. On the other hand, serial dependence of longitudinal 
data is but one instance of dependencies. Diggle et al. (2002) and Verbeke 
and Molenberghs (2000) distinguish among three types of variability which 
may play a role in longitudinal data. The first one groups traditional ran­
dom effects (as in a random-effects ANOVA model) and random coefficients 
(Longford, 1993) reflecting interindividual variability (Le., heterogeneity 
between individual profiles). The second type, serial association, is present 
when residuals close to each other in space or time are more similar than 
residuals furt her apart. This not ion is weIl known in the spatial and time­
series literat ure (Cressie, 1991; Diggle, 1983, 1990; Ripley, 1981). FinaIly, 
in addition to the other two types, there is potentially also measurement 
error. 

Formulating models that incorporate at the same time the random effects 
and serial association is not straight forward for non-normal outcomes. This 
follows from the rather strict separation between random-effects models 
and conditional models, as discussed in Section 4.2. For binary outcomes, 
a few proposals are available. Wolfinger and O'Connell's (1993) method, 
described in Section 4.5.2, allows for aserial component in the model for 
the working dependent variate y*. Renard, Molenberghs, and Geys (2002) 
construct a mixed model for binary outcomes using a probit rather than a 
logit link function. This choice allows for an easy inclusion of aserial com­
ponent through inclusion of such a component in the linear mixed model 
for the latent Gaussian random vector. The corresponding marginal model 
is of the multivariate probit type. Within the multilevel modeling frame­
work (Goldstein, 1995) extensions have been formulated that also include 
serial correlation. 

As discussed before, most models considered here heavily rely on the 
normality assumption for the random effects. Lee and NeIder (1996) have 
argued that, especially for non-normal outcomes, it can be of interest to 
entertain other than normal random effects. Situations have been described 
where the choice of random-effects distributions can have important conse­
quences on the inferences (Spiessens, Lesaffre, Verbeke, & Kim, 2002, 2003; 
Verbeke & Lesaffre, 1996). One possible model extension is obtained from 
replacing the normal distribution by a finite mixture of normals. This is 
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a very flexible dass of models, not only aIlowing for symmetric as weIl as 
skewed distributions, but also for multi-modality in the mixing distribution. 
This will be discussed and illustrated at length in Chapter 11. 

4.10 Concluding remarks 

In this chapter, a general framework for modeling repeated categorical 
data has been sketched, with three main model families: marginal, con­
ditional, and person-specific (random effects). We have focused mainly on 
person-specific or random-effects models, with some emphasis on the gen­
eralized linear mixed models. Interpretation, estimation, and optimization 
algorithms have been discussed. These tools have been exemplified using a 
simple but illustrative analysis. While the similarities between linear and 
generalized linear mixed models are often pointed out, perhaps rightly so, 
one should be very aware of the differences. 

First, there is a dose connection between parameter estimates from aIl 
model families when the responses are normaIly distributed. But this is not 
true in the generalized linear case. Indeed, in marginal modeling, the regres­
sion parameters are unequivocaIly population parameters; they determine 
the effect of explanatory variables on the population mean response. In 
conditional (e.g., transition) and random-effects modeling, the regression 
parameters are still population parameters, in the sense that they oper­
ate on aIl persons, but they determine the effects of explanatory variables 
on the mean response of an individual person, conditional on that per­
son's measurement history (transition model), or on the person's own ran­
dom characteristics (random-effects model). As discussed in Section 4.6.3, 
a conversion is possible in some contexts, but additional computations are 
required. 

Second, the random effects and the measurement error interact com­
pletely differently in linear and generalized linear mixed models. In a linear 
mixed model, the random effects are part of the linear predictor, and this is 
shared with the generalized linear mixed model case. However, the measure­
ment error (residual error) term is also within the linear predictor in the 
linear mixed model. The measurement error or the corresponding element 
in the generalized case determines the distribution of the data given the 
linear predictor value. The transformed linear predictor value based on the 
inverse link function is the expected value of the distribution. In principle, 
the measurement error cannot be incorporated into the linear predictor 
because of the transformation implied by the link function. Hence, both 
components of variability are not part of the same linear function in the 
generalized case. 

Third, the presence of a link function generaIly prohibits the existence 
of a dosed form expression for the score-equation contributions, so that 
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integrals cannot be avoided. This renders parameter estimation more com­
plicated and a wide dass of algorithms have been proposed, with an as­
sociated dass of software tools (see Chapter 12). Arguably, knowledge of 
several (software) tools with a good understanding of the approximations 
on which they are based can greatly enhance insight. 

4.11 Exercises 

1. Formulate the Rasch model as a generalized linear mixed model using 
the notation of this chapter. 

2. Describe two studies with item responses as the dependent variables: 
(1) with fixed item effects and (2) with random item effects. 

3. Consider two groups of items (e.g., language and science oriented). It 
is of interest to determine differences in difficulty between the types of 
items (language, science). Formulate appropriate models, thereby reftect­
ing carefully on the model family that is appropriate to answer the question. 

4. Among scientists, it is believed that respondents are either science­
oriented or humanities-oriented. Formulate a model that reftects this as­
sumption. This quest ion could in principle be tackled using the general 
model formulation. However, you may find it helpful to first consider Chap­
ter 8. 

5. Persons and items are being followed over time. Formulate a candidate 
generalized linear mixed model to incorporate this structure. 
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Part 11: Models with external 
factors - predictors and their 
effects 
The aim of this and the following part is to present more complex item 
response models that build on the framework presented in Part I. We start 
with a basic scheme: The basic unit of observation is a pair of a person and 
an item. The observable dependent variable is Y pi , and its expected value, 
'l]pi is modeled as a function of a set of predictors, functioning, in Part II, as 
externat fact ars to analyze the data. Two broad kinds of extensions of the 
four models from Chapter 2 will be introduced here and developed furt her 
in this book. 

The first and most evident set of extensions concern combinations of: 
(1) the nature of the external factors, person predictors, item predictors, 
person-by-item predictors; and 
(2) the nature of the effects: fixed or random effects of the external factors. 

Before describing the system, we will briefly comment here also on a 
second set of extensions, where external factors are replaced with or sup­
plemented with internat factars. This will be the focus of Part III. For this 
second set of extensions we will stretch the meaning of the term 'predic­
tor' to include predictors with latent values (parameters), and predictors 
that are themselves random variables, such as the responses on other items. 
We will call such predictors internal factors, because they stern from the 
data to be analyzed. This extension leads to the two-parameter (logistic 
and normal-ogive) model, the multidimensional model with item weights, 
mixt ure models, and local item dependence models. The chapters related 
to these extensions are grouped in Part III. 

We start the description of the system to build models as in Part II 
with a discussion of the sources of variation, followed by a discussion of 
what external factors can explain and how they are connected with random 
variation. 

11.1. Variation 

Beyond global means, we need to model variation (and co-variation). We 
will consider two types of variation: random variation, and variation due to 
fixed effects of external factors, and we start with a discussion of the first 
type of variation. 
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Given that persons as weIl as items are involved, random variation can 
occur on either side, persons or items, and the variation can occur sepa­
rately or in combination. The person side is the most natural one to think 
about in terms of random variation, as persons are more often drawn at 
random than items are. 

II.l.l Levels of random variation at the person side 

If one considers two or more observations regarding different persons, these 
observations may differ for several reasons. 
(1) The persons may belong to different groups. For example, perhaps 
neighborhoods differ as to how verbally aggressive people tend to be on 
the average. 
(2) The persons are different individuals within the group they belong to. 
Continuing the example, it is highly likely that people differ although they 
live in the same neighborhood. 
(3) The observations may differ because people can vary over occasions 
(i.e., within themselves). People's behavior commonly varies depending on 
the occasion when the observation is made, so that when the observations 
differ it may be due to the occasions of observation, even when all other 
influences are equal. See Figure 11.1 for a graphical representation of the 
levels. 

Suppose that at each of these three levels the variation is random varia­
tion, because the occasions, the persons, and the groups are all drawn from 
populations. These populations are hierarchically ordered: a population of 
occasions within each person, a population of persons within each group, 
and finally a population of groups. The observed variation at a given level 
includes variation due to sampling at the lower level (i.e., occasions for 
aperson, persons for a group). Conversely, the observed variation at one 
level also sterns partly from higher levels. In the example above, the varia­
tion between persons sterns not only from the occasions but also from the 
neighborhood the persons live in. Models can differ in where they locate 
random variation. Here, we have assumed that random variation occurs at 
all levels - a reasonable alternative would be that the variation between 
groups does not stern from random variation, but from the specific and 
fixed effects that the groups have. 

Where the random variation is located is not without consequences. Sup­
pose one wants to isolate the part of variance that sterns from individual 
differences while assuming that random variation occurs at all three levels. 
Then the variation among all persons will, in general, be an overestimation 
of the variation stemming from the persons. This is so, first, because part 
of the variation sterns from the occasions, and second, because part of the 
variation sterns from group differences. One can subtract the variation that 
sterns from the groups, but one should realize that the observed between­
group variation is not a pure indication of the group differences because 
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Population of groups 
(observed through groups) 

I 
Groups 
(observed through persons) 

I 
Persons within groups 
(observed through occasions) 

I 
Occasions within persons 

level 3 of variation 

level 2 of variation 

level 1 of variation 

FIGURE 11.1. Three levels of variation. 

these differences include also some random variation due to the sampling 
of persons, and because the groups themselves are sampled. 

To handle these problems one needs a model to isolate the variation from 
each of these different levels. We will illustrate this with an extension of the 
random-intercepts model. The corresponding model is presented in Figure 
Il,2. The second row shows the model for 7rp i (linked to 'T/pi through the 
link function), and the third row displays the model for the hypothetical 
underlying continuous variable. 
(1) The basic level of random variation corresponds to cpi. This basic vari­
ation concerns the occasion and is indicated as level 1 in Figure Il,l and 
Figure Il,2 (see Figure 1.3b for the distribution; the notation foHows from 
Chapter 2). In its binary form (after dichotomization), this source of vari­
ation is reflected in the Bernoulli distribution that defines the random 
component of a GLMM. 
(2) The person level of random variation corresponds to (Jp - the random 
intercept (or person parameter from the item response model terminology). 
The random person variation is the variation in 'T/pi given the fixed effects, 
and it is located within the linear component. As mentioned earlier, the 
slopes as weH as the intercept may show random variation over persons. 
The person level is the level 2 of random variation in Figure Il,l and Figure 
Il,2. 
(3) Variation may occur also at the group level, and although this variation 
is not included in the models we have seen in earlier chapters, its inclusion 
is rat her simple. One can add group-specific effects of the predictors X as 
in Figure Il,2. We have used the same Xs for person predictors and group 
predictors, but they can of course also be different. We will use 9 as a group 
index, 9 = (1, ... , G). The group level is the level 3 of random variation in 
Figure II.1 and Figure II.2. 
(4) Besides the three random parts, the model also contains a fixed part: the 
fixed effects of item predictors and person predictors. This part is presented 
to the left of the three random parts in Figure Il,2. 

FoHowing the above, the equation in Figure Il,2 has four parts on the 
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right hand side: A fixed part, a random group variation part, a random 
person part, and a random occasion part. The first three parts constitute 
the linear predictor 'TIpi, including the variation at levels 2 and 3. The fourth 
part constitutes the random component or the variation at level 1. The last 
three parts constitute different levels of random variation, while the first 
reflects variation attributed to the fixed effects of external factors. 

When random variation is defined, a distribution must also be specified. 
In the normal-ogive models a normal distribution is assumed for cpi , with 
mean zero, and variance a; independent of the pair (p, i). In the corre­
sponding logistic models, a logistic distribution is assumed. In all models 
of this volume, except for the chapter on mixt ure models, Bpk is normally 
distributed with mean zero, and variance a~(p). In a similar way, Bgk is 

normally distributed with mean zero, and variance a~(g). 

Model Fixed Random Random Random 
for effects groups persons occasions 

Level 3 Level 2 Level 1 
7rpi 'TIpi: Linear component Random 

component 

V pi = ~ßkXik+ DßjZpj + ~BgkXik + ~BpkXik + Cpi 

FIGURE 11.2. Schematic presentation of different levels of random person varia­
tion. 

The alternative to random variation is jixed variation. This means that 
the variation would stern from fixed occasions, fixed persons, or fixed groups. 
The concept of 'occasions' is introduced in this volume to deal with the un­
certainty that remains when everything else of relevance is known about 
the pair of a person and an item. Therefore it does not make sense to define 
occasions as fixed. However, persons and groups may indeed be considered 
as fixed. One may be interested in persons not so much as members of a 
group they are sampled from, but as persons in their own right. Or one 
may be interested in groups not so much as members of a larger set of 
groups (e.g., neighborhoods as members of a town), but as groups in their 
own right. For example, one may want to know what the differences are 
between two specific neighborhoods. Models differ as to where they locate 
random variation: at all three levels, at the occasion level and the person 
level, or only at the occasion level. In general, fixed variation can take the 
place of random variation, except for level 1, where, as noted above, the 
variation is always random. This means that in Figure II.2 the random 
variation may be replaced by fixed variation in the middle cells (levels 2 
and 3). 
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IJ.1.2 Levels 0 f random variation at the item side 

The levels we have just described for persons may also be considered for 
items. The basic level would be the same, but the next two levels would be 
for items and groups of items. Suppose an inventory were constructed with 
24 frustrating situations: 12 other-to-blame situations and 12 self-to-blame 
situations. The specific situations could have been selected at random from 
two much larger sets, one of each type, gathered through a survey in which 
people were asked to list common frustrating situations. It is somewhat 
harder to think of item groups as also being selected at random from a 
set of item groups. Although possible in principle, we will not discuss it 
further, as we do not have an interesting application for this concept. 

Continuing the example above, when one is interested in the two types 
of frustrating situations, it makes sense to sampie more specific situations 
within each of these types, in order to infer from the two sampies what the 
difference is between the types of frustrating situations. But the two types 
themselves are studied for their fixed effect, as one is interested in them 
as two specific types and not as representatives of categories of situation 
types. Therefore, a reasonable model for the variation at the item side 
would be one with fixed effects for item groups (level 3 for items), and 
random variation at the item level (level 2 for items), and random occasion 
variation (level 1) (see Chapter 6). 

11.1.3 Hierarchical and crossed random variation 

When random variation is taken into account at both the item side and the 
person side, and at levels higher than the level of occasions (level 1), for 
example for items and persons, then there is no longer a strict hierarchy of 
random variation. The observation concerning a pair (p, i) belongs to both 
a person and an item. The classification of the pairs is a cross-classification 
according to the persons and the items. Random variation is then associ­
ated simultaneously with categories that are crossed in the observations, 
hence, the random variations may be called crossed mndom variation. This 
is contrasted with random variation that is associated with strictly hier­
archical categories (occasions, persons, person groups), in which case the 
random variations may be called hiemrchical mndom variation. 

Crossed random variation may concern persons and items, as obviously 
persons and items are crossed, but mayaiso concern categories of items. 
For example, one could see the Behavior Type levels (Curse, Scold, Shout) 
as sampled from a larger framework of verbally aggressive behaviors. And 
one could see the situations from the two Situation Types as being sampled 
from a larger framework of situations. Since Behavior Type and Situation 
Type are crossed in the items, a crossing of random variation would need 
to be considered. 

Chapter 5 describes hierarchical random variation on the side of the per-
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sons (persons and groups of persons), as in the more common applications 
of multilevel modeling. Chapter 6 describes hierarchical random variation 
on the side of the items, and also discusses crossed random variation: ran­
dom person variation combined with random item variation within item 
groups. 

II.1.4 Variation based on fixed effects 

One common way to account for variation in the data is to assign the 
variation to fixed effects of external factors; see the first right-hand part of 
the equation presented in Figure 11.2. As illustrated in Chapter 2, properties 
of items and properties of persons can be included in the model to explain 
variation in the data of different items and persons. For example, whether 
someone else or oneself is to blame for a frustrating situation can make a 
difference for the verbal aggression tendency. Other-to-blame versus Self-to­
blame is an item property, and also Behavior Type (Curse, Scold, Shout), 
and Behavior Mode (Do versus Want) are item properties. In a similar way, 
Gender and Trait Anger are person properties that can be external factors 
influencing the response data. They can all function as external factors or 
predictors of the variation in the responses. When they turn out to have 
an effect on the observations, then this contributes to our understanding 
of the responses. 

Another, less explanatory and more descriptive way of analyzing varia­
tion is the use of indicators. For example, in the Rasch model, item indica­
tors with fixed effects are used to describe the variation between the data 
from different items. 

11.2 External factors 

The sources of variation we have discussed thus far are of two types. The 
variation either sterns from a random sampling process for persons, groups, 
or items, independent of any external factors; or it sterns from the fixed 
effects external factors have. There is a third possibility in that external 
factors may have random effects and not just fixed effects. 

We have seen in Chapter 2 that people tend to actually act less than they 
want when it comes to verbal aggression. However, it might be that not all 
persons show the same discrepancy between wanting and doing. Some may 
have almost no discrepancy, while others tend to inhibit themselves quite a 
bit (see Figure 1.2). In this case, the effect of doing versus wanting would be 
no longer fixed (the same for all persons), but heterogeneous over persons. 
Thus, the effect an external factor mayaIso show random variation. In 
sum, external factors may have fixed effects or random effects. 

Except for the constant predictor, there are no models formulated in ear-
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lier chapters that have predictors with a random effect. We have mentioned 
this possibility in general, but we have not looked at such models in more 
detail. When these models are discussed later in the book, we will focus 
on random variation over persons, but also random variation over items is 
possible. 

External factors can be of different types independent of whether they 
concern items or persons (properties, indicators, constant predictors), and 
depending on the types that are included, the model is of a different type 
as well. Together with the kind of effect (fixed or random), the kind of 
external factors included also defines differences between models. 

II. 2.1 Properties 

External factors may be item properties, person properties, or person-by­
item properties. For example, Gender is a person property, Behavior Mode 
is an item property. Person properties and item properties are features of 
persons and items, respectively, which have the following characteristics: 
(1) they differentiate between persons and items (the constant predictor is 
excluded) and (2) they do more than indicate a person or an item (indica­
tors are excluded). 

A special type of person and item property is a group: the group a per­
son or an item belongs to. Models including such properties are extensively 
discussed in Chapters 5 and 6. These groups can in turn have properties, 
so-called gmup properties: properties of person groups or of item groups. 
For example, the population density of a neighborhood is a person group 
property. Formally they can be treated as person properties and item prop­
erties, respectively, with all persons (or items) of the group being assigned 
the same value. 

Thus far only person properties and item properties have been used in the 
item response models we have touched upon. However, person-by-item prop­
erties can also be very meaningful to incorporate in a model. For example, 
it turns out that in the example study, the inhibition (discrepancy between 
wanting and doing) is larger for women than for men (see Chapter 7). In 
order to obtain a person-by-item property one can simply multiply the cor­
responding co ding for person and item properties. We have introduced the 
symbols X and Z for item predictors and person predictors, respectively, 
so that it seems appropriate to introduce a separate symbol for person-by­
item properties as well: W, with an index h, h = 1, ... , H. An example of a 
person-by-item property would be W pi genderxdo, with W pi genderxdo = 1 if 
Zp gender = 1 and W i do-want = 1, and W pi genderxdo = 0 otherwise. The 
fixed effects are denoted by Ogenderxdo. The corresponding random effects 
of interaction parameters would be denoted by "(. 

This third kind of property is an important one to model differential 
item functioning (DIF), since DIF basically is group-by-item interaction. 
Another application is the use of responses to one item as a predictor for 
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the responses on another item, for example to study local item dependence. 
Since this kind of predictor is not used for all items (has a zero value for 
other items), and since people would differ in their response to the predictor 
item, it too is a person-by-item predictor. Because responses to other items 
are in fact internal factors, these models are discussed in Part IH. Chapter 
7 gives a description of how person-by-item predictors can be used in a 
GLMM context for item response models. 

II. 2. 2 Indicators 

Formally speaking, indicators are external factors, but they differ from 
properties in that they do not assign a characteristic to a person or an item, 
but only an identification label instead. In the models we have seen so far, 
the fixed effects of item indicators are the item parameters. They are the 
effect of individual items. Just as for item indicators, person indicators may 
be defined, each with its own fixed effect. This would correspond to seeing 
the persons not as representatives of a group, but as individual persons 
that each come with their own individual fixed effect. The inference to be 
made would then be about these individual persons, and not about the 
group they belong to. 

There is a model that is based on the logic of fixed persons: the joint 
maximum likelihood (JML) equivalent ofthe Rasch model. The JML model 
is a model with both item indicators and person indicators, each with its 
own fixed effect. The effects are known not to have consistent estimations, 
because the number of parameters increases with both the number of per­
sons and the number of items. Another good reason for not using this model 
is that it makes sense to think of persons as sampled from a larger group, 
rat her than as being selected because of who they each are individually. 

A special type of indicator is the group indicato'r. An example would be 
the specific schools that students came from, or the specific neighborhood 
that specific survey responses came from. A group indicator indicates the 
group a person belongs to, and therefore they are also person properties, 
and can be treated as such. However, although they are properties they 
do not have much explanatory value. Only when group properties are also 
included can one explore and test factors underlying group differences. 

II.2.3 Constant predictors 

The constant predictor is a predictor with only one value for all elements, 
the value one, either for all items (Xo) or for all persons (Zo). The fixed 
effect of the constant predictor is the intercept in the linear component. If 
for all other predictors the co ding is centered on the overall mean of the 
predictors, the effect of the constant predictor reflects the overall mean. It 
does not make sense to use a constant predictor for both the items and 
the persons simultaneously if their effect is fixed. The two intercepts can 
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simply be added into one (ßOXiO + 'I9oZpO ), which can either be assigned to 
the constant item predictor (the new ßo = the old ßo + the old '190 ) while 
the fixed effect of the person constant predictor is set equal to zero (the 
new '190 = 0), or vice versa. 

When the effect of a constant predictor is a random effect, a random 
intercept is obtained. For example, the random intercept Opo (or cp) is the 
normally distributed effect of the constant item response predictor X iO • 

One may exchange X o for Zo, so that Opo is the random effect of Zo, which 
should be denoted by (po, since the symbol ( will be used for random effects 
of person predictors Z, but since one could have used X o instead of Zo, 
in practice Op or Opo are preferred. The two forrnulations of the random 
intercept we gave are equivalent. In both formulations, the variation is 
random over persons. What rnatters is the mode (the persons or items) 
over which the random variation is defined: over persons or over items. As 
will be shown in Chapter 6, the intercept can also be randorn over items. 

11.3 Random variation and external factors as 
building blocks for models 

External factors (the properties, indicators, the constant predictors dis­
cussed above) may have fixed effects or random effects, and the effects 
may vary over persons, over items, over groups of persons, or over groups 
of items. Predictors and their effects are the building blocks of modeling. 
They can be combined in various ways in order to build a model according 
to one's needs for description and explanation. As will be explained, the 
type of co ding of the predictor also plays a role. In the next five sections 
(II.3.l to II.3.5) we provide a sampie of meaningful combinations of these 
building blocks to illustrate the variety that is possible. 

A general observation is that when more than one randorn person ef­
fect is defined, the model is multi dimensional and also the elements of the 
variance-covariance matrix are parameters. This applies in an analogous 
way to models with more than one random item effect, although these 
models would commonly not be called multidimensional. The term 'multi­
dimensional' is usually reserved for the dimensionality of person variation. 
Multidimensional models are not a topic of Part II of this book, but of 
Part III instead. However, as we will describe here a general system, some 
examples of multidimensional models will also be given. 

II. 3.1 Effects 01 item properties 

Let us consider the item property Do vs Want as an example, and assurne 
a dummy coding, so that for do-items the value is land for want-items it 
is O. The following effects may be considered as meaningful effects: 
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(1) Fixed effect. The fixed effect of the item property refiects the mean 
difference between doing and wanting. This difference is to be interpreted 
as an item independent and person independent inhibition effect ßda-want. 

(2) Random person effect. This would mean that people vary in how much 
they inhibit their verbal aggression, which would be expressed through the 
random effect Op da-want (with index p for persons). 
(3) Random item effect. This would mean that the 12 do-items differ with 
respect to how much people inhibit their verbal aggression. Given that for 
want-items the property has a value of zero, the random do-effect tells us 
how large the inhibition is for each of the 4 x 3 combinations of a situation 
and a behavior (i.e., for each of the do-items). The symbol for this random 
effect would be Oi da-want (with index i for items). 
( 4) Random group effect. The effect would refiect the random variation of 
groups, for example neighborhoods, with respect to how much they inhibit 
verbal aggression. This effect Og da-want (with index g for groups) is a 
hierarchically higher effect in comparison with Op da-want. 

The effects (2) and (4) are hierarchically related random effects, while 
the effects (2) and (3) are crossed random effects when included into the 
same model. All these effects come on top of the basic random variation 
as expressed in the random component (the Bernoulli distribution) at the 
level of the occasions. 

II.3.2 Effects of person properties 

Let us consider Gender as a person property, first with a dummy co ding so 
that for males the value is 1 and for females it is o. A second co ding will be 
used for illustrative reasons, with a double dummy coding: the first with 
1 and 0 (as before), and the second with 0 and 1, for males and females, 
respectively. The following effects may be considered. 
(1) Fixed effect. The fixed effect of the single-coded Gender is simply the 
effect of being male, iJmale . This fixed effect is included in models from 
Chapters 2 and 3 that use person properties. Remember that the differ­
ence was not statistically significant when analyzing binary data, but this 
was different when the three response categories were taken into account. 
(2) Random item effect. This effect implies that depending on the item, 
the difference between males and females with respect to verbal aggression 
depends on the item; this random effect is denoted with (i male (with index 
i for items). The effect may be interpreted as differential item functioning 
with the degree of differential functioning varying at random depending on 
the item. Note that the interaction of Gender with one or more items can 
be studied also as a fixed effect; see Section II.3.4. 
(3) Random group effect. Suppose that there is variation over neighbor­
hoods in how different are males and females. This would be refiected in 
an effect (g male (with index g for groups). 

Given the dummy coding, a random person effect does not make much 
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sense, although possible in principle. It would imply that males differ while 
females do not. A more elegant way to model variation within the two 
genders is to use a double dummy eoding. 
(4) Random person eJject. Instead of using one random intereept, one may 
define random effeets for two gender properties Z female (= 1 if female, = 0 
if male) and Zmale (= 1 - Zfemale): (p female and (p male (with index p 
for persons). They ean each be seen as gender-specifie intereepts. If the 
varianees of the two normal distributions are not fixed to be equal, then 
this is also a way to allow for a different varianee for the two genders (Le., 
heteroseedasticity) . 

11. 3. 3 Effects of group properties 

Let us eonsider neighborhoods as groups, and the density of the population 
as a group property. The following meaningful effeets ean be eonsidered. 
(1) Fixed eJject. For example, perhaps it is socially more stressful to live 
in a densely populated neighborhood, so that the tendeney to be verbally 
aggressive is higher. This would be refleeted in a fixed effect {) dense of a 
binary (or eontinuous) density property. 
(2) Random person eJject. Perhaps some people are affected more than 
others by the density of their neighborhood. This ean be expressed in a 
random effeet parameter (p dense (with index p for persons) of a binary 
density property. 

IJ. 3.4 Effects of item indicators 

Let us consider the item indicator 1 in Table 1.1 (for cursing when a bus 
fails to stop), one among the 24. Three effeets can be eonsidered. 
(1) Fixed eJject. The fixed effeet of the indicator is simply the item para­
meter ßI. 
(2) Random person eJject. The indicator may have an effeet that is random 
over persons, Opl (with index p for persons), so that a specifie dimension is 
introdueed for eursing when buses fail to stop.l Note that item indicators 
eannot have an effeet that is random over items, beeause by definition an 
item indicator eoneerns only one item. 
(3) Random group eJject. If the indieator in question had a random group 
effect Ogl (with index 9 for groups), it would mean, for example, that the 
neighborhoods differ in how easily people eurse when a bus fails to stop. 
This might malm sense if bus drivers are more negligent with respect to 
stopping in some neighborhoods than in others. Random group effects for 

1 Note that when an item indicator effect has a random effect in one group, this will 
translate into a smaller degree of discrimination of the item for the group in question. 
Consequently, this will be a case of nonuniform DIF (see Chapter 7). Conversely, a 
random item indicator effect is a possible interpretation for nonuniform DIF. 
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item indicators are a way to test for differential item functioning. For ex­
ample, one may try out each of the items in turn, to find out whether they 
show a random group effect. If an item does, this is a clear indication of 
DIF. Note that as an alternative - fixed interaction effects can be also for­
mulated - this would make sense, for example, if Gender interacted with 
one or more items. 

As explained earlier, the use of person indicators is much less common 
because one is normally not so much interested in the behavior of individual 
persons. An exception might be when one wants to find out about person 
fit, but even so it would be cumbersome to work with as many indicators 
as there are persons (see Chapter 6). 

//.3.5 Effects 0/ constant predictors 

Suppose a constant item predictor is included in the model. The following 
meaningful effects may be considered. (Note that a constant person predic­
tor can fulfill an equivalent role, because just like a constant item response 
predictor it has a value of 1 in the expression for all Ypi.) 

(1) Fixed effect. The fixed effect of the constant predictor is an intercept 
ßo, as in the LLTM. This intercept reflects the mean level of the responses 
if the mean of the person parameter is zero and the other predictors are 
included with a coding that is centered on the overall mean. When in ad­
dition a plus parametrization (Op + ... + ßo) is used, a positive ßo indicates 
that the verbal aggression tendency is high enough to yield response prob­
abilities that are on the average higher than .50. 
(2) Random person effect. The random person effect Opo or Op (with index p 
for persons) of the constant predictor is simply a random person intercept, 
as in the models from Chapter 2. 
(3) Random item effect. When the effect is random over items, it is as­
sumed that the item difficulties differ at random, with an effect OiO (with 
index i for items). This may be a meaningful assumption if one considers 
the items as being sampled from a broader set, without being interested in 
the individual items as such (as explained in Chapter 6). 

The following chapters, from Chapter 5 to 7, illustrate how person pre­
dictors, item predictors, and person-by-item predictors can lead to various 
item response models, depending on the kind of predictor and the kind of 
effect they are assumed to have. 



Chapter 5 

Person regression models 

Wim Van den Noortgate 
Insu Paek 

5.1 Introduction 

In this chapter, we focus on the person side of the logistic mixed model. 
As described in Chapter 2, the simple Rasch model can be extended by 
including person characteristics as predictors. The resulting models can be 
called latent regression models, since the latent person abilities (the es) are 
regressed on person characteristics. A special kind of a person characteristic 
is a person group: for instance, pupils can be grouped in schools. Then 
there are two possibilities for modeling, either we can define random school 
effects, or we can utilize school indicators with fixed effects. 

In the following, person regression models will be discussed within the 
framework of multilevel analysis. We start with a presentation of multilevel 
data and models. Next, we show how data in item response modeling ap­
plications are often hierarchically structured, with measurement occasions 
nested within persons, and how the simple Rasch model can be regarded 
as a descriptive 2-level model. We will describe how this model can be 
extended by including person characteristics as predictors, resulting in a 
latent regression 2-level model. We furthermore discuss the extension of the 
descriptive or latent regression models with one or more additional levels, 
to model the nesting of persons in groups of persons, e.g., schools. This 
extension results in a descriptive or a latent regression multilevel model 
with three or more levels. We close the chapter with some furt her model 
extensions, a set of exercises, and a section containing software commands 
that will allow the reader to carry out some of the analyses. 

5.2 Multilevel models 

The reality investigated in social and behavioral research is usually multi­
layered. For instance, individuals generally belong to specific groups, or are 
observed in specific social contexts. An example of a multilevel structure 
in education is the grouping of pupils in classes or in schools (Figure 5.1). 

Often data are gathered about the units at different levels. Table 5.1 
shows a representation of a multilevel data set (with data from pupils nested 



168 Wim Van den Noortgate, Insu Paek 

Level 2 
(Schools) 

Level 1 
(Pu pils) 

School1 School 2 ... School J 

... N2 ... NJ 

FIGURE 5.1. A multilevel data structure. 

in schools). Note that the school variable is constant over pupils from the 
same school, and that the number of observed pupils (level-l units) per 
school (level-2 unit) varies over schools. 

TABLE 5.1. A multilevel data set. 

School Pupil School Size Gender Math 

1 1 156 M 78 
1 2 156 F 91 

1 NI 156 F 84 

2 1 177 M 62 
2 2 177 M 77 

2 N 2 177 M 80 

J 1 212 F 72 
J 2 212 M 81 

J NJ 212 F 76 

Often there are different soure es of variability associated with these lev­
els. For instance, besides variation between math-scores from pupils within 
the same school, there may be systematic differences between schools in 
the performance of the pupils. Variation between higher level units induces 
dependence in the lower level scores: if schools differ in their performance, 
this means that in general pupils from the same school are more similar 
than pupils from different schools. Traditional analyses (e.g., linear regres­
sion with fixed effects) often ignore the different sources of variation from 
different levels and therefore may result in wrong conclusions. In multi-
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level models, these different sources of variation are explicitly taken into 
account. Moreover, multilevel models allow characteristics of the units at 
different levels to act as predictors, as we shall see later. 

During the last two decades, hierarchicallinear and hierarchical general­
ized linear models were developed in order to analyze such 'multilevel' data 
(Goldstein, 1987a; Raudenbush, 1988; Longford, 1993). A simple example 
is a hierarchical linear model with two levels and a predictor on each level, 
which reads as follows: 

Level 1 Yij = ßOj + ß1j Xij + eij, 

Level 2 ßOj = /00 + /01 Zj + UOj, 

ßlj = /10 + /nZj + Ulj, 

(5.1) 

with i = 1,2, ... , N j indicating the level-1 units (e.g., pupils) 'nested' 
within the level-2 units (e.g., schools), indicated by index j = 1,2, ... , J. 

For Equation 5.1, we used the model formulation and notation that are 
typical in multilevel literature, but deviate from those used in the follow­
ing sections and in the rest of the volume. The first line of Equation 5.1 
describes the scores of the level-1 units using characteristics of the level-
1 units as predictors. It differs from an ordinary regression equation in 
that the regression coefficients (including the intercept) can depend on the 
level-2 unit. The variation of the coefficients is described by new regression 
equations on the second level. The coefficients of these level-2 equations 
may in turn be regressed on a third level, and so on. Substituting the level-
1 coefficients with the right hand sides of the level-2 equations results in 
the following equation, after reordering the terms: 

Equation 5.2 includes four kinds of predictors: a constant predictor (equal 
to 1 for all units), a level-1 predictor X, a level-2 predictor Z, and the 
product of the level-1 and level-2 predictor. In the first part of the right 
hand side of the equation, the coefficients of the predictors do not vary 
but are fixed instead. Therefore, this part of the equation is called the 
fixed part. In the second part, the coefficients vary randomly. The constant 
predictor has a coefficient (eij) that varies randomly over level-1 units 
and a coefficient (UOj) that varies randomly over level-2 units. The level-
1 predictor has a coefficient (Ulj) that varies randomly over the level-2 
units. A hierarchicallinear model thus includes predictors with fixed and/or 
random effects, and therefore is often called a mixed model. 

In case the dependent variable Yij is a dichotomous (or categorical) vari­
able, the hierarchical linear model as described above must be adapted to 
a hierarchical generalized linear model. This is done in much the same way 
as the linear regression model is adapted to a generalized linear regression 
model (McCullagh & NeIder, 1989). A probit or logit link function is de­
fined, as described in Chapter 1. Adapting the hierarchical linear 2-level 
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model given in Equation 5.1, by defining a logit link function, results in 
the following hierarchical logistic 2-level model, again using the notation 
typical to multilevel modeling: 

Level 1 Vij = ßOj + ßlj Xij + eij, 

Level 2 ßOj = /00 + /01 Zj + UOj, 

ßlj = /10 + /l1 Z j + Ulj, 
(5.3) 

with Vij the covert continuous variable from which Yij is a dichotomization, 
eij logistically distributed (see Chapter 1), Yij'"vBernoulli(7rij), 7rij equal to 
the probability that Yij = 1, and logit(7rij) = ßOj + ßljXij . 

Parameters of multilevel models are commonly estimated using maxi­
mum likelihood procedures. To obtain the likelihood function, the random 
effects are integrated out. Unfortunately, for the hierarchicallogistic model, 
unlike for the hierarchical linear model, this likelihood cannot be written 
in a closed form. One solution for solving the integral in the likelihood is 
numerical integration, for example using the Gaussian quadrature, as im­
plemented in the procedure NLMIXED from SAS. A second solution is to 
approximate it with linearization techniques. This is done in the iterative 
quasi-likelihood procedures for generalized linear mixed models (Breslow 
& Clayton, 1993), which are typically used in specialized software for hier­
archical (generalized) linear models, such as HLM (Bryk, Raudenbush, & 
Congdon, 1996) and MLwiN (Goldstein et al. , 1998). More details about 
the estimation procedures are given in Chapters 4 and 12, and about soft­
ware in Chapter 12. 

It has been shown before that several popular item response models can 
be formulated as hierarchical generalized linear models (Adams, Wilson, 
& Wu, 1997; Kamata, 2001; Raudenbush & Sampson, 1999, Rijmen et al., 
2003). In the following section, we will illustrate the hierarchical structure 
of typical item response data, and reformulate the basic Rasch model as a 
descriptive hierarchical 2-levellogistic model. Further, the extension of the 
model by including person characteristics, resulting in a 2-level model with 
latent regression on the second level, will be described. 

5.3 The Rasch model and the latent regression 
model as 2-level models 

In item response modeling applications, each person responds to a set of 
items. Each person therefore is repeatedly observed. One way of dealing 
with the repeated observations in item response modeling applications is by 
regarding this situation as a multilevel problem, with observation occasions 
(u = 1,2, ... , Up ) nested within persons (p = 1,2, ... , P), as shown in 
Figure 5.2 . Note that typically each person responds to each item, such 
that the number of measurement occasions per person equals the number 
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of items (Up = I for all p), but the same framework could also be used 
if some persons do not respond to all items or respond to specific items 
on several occasions. As a result of this multilevel structure, the data sets 
in item response modeling applications often look very similar to typical 
multilevel data sets, such as the one given in Table 5.1. 

Level 2 Person 1 Person 2 ... Person P 
(Persons) 

Level 1 ... U1 
(Measurement 

occasions) 

FIGURE 5.2. The multilevel data structure in regular item response modeling 
applications. 

In the MML formulation of the Rasch model (Bock & Aitkin, 1981), 
the response of person p to an item i, Ypi , is regarded as a function of 
the person ability (Op) and the item difficulty (ßi); persons are regarded 
as a random sampIe from a population in which the person abilities are 
identically and independently normally distributed (Equation 5.4 below). 
Note that in order to make the model identified, a constraint needs to be 
added, say make the mean of the population distribution zero. The Rasch 
model is given by: 

(5.4) 

with i = 1, ... ,I indicating the item, p = 1, ... , P indicating the person, 
Ypi",Bernoulli(7rpi), 'f}pi = 10git(7rp i) given Op, and Op '" N(O, (T~). 

The Rasch model can be reformulated as a 2-level logistic model, with 
measurement occasions (level 1) nested in persons (level 2). On the different 
occasions, persons respond to different items. Since items usually differ in 
difficulty, it can be expected that part of the variation within persons can 
be explained by the items. Since one is interested in the variation of the 
scores within persons as far as they can be explained by the items, item 
indicators are included in the model as characteristics of the measurement 
occasions, resulting in the following level-l model: 

K 

Vpiu = Opo + L ßkXiuk + Cpiu, 
k=l 

(5.5) 

with index u for occasions, X iuk = 1 if k = i, X iuk = 0 otherwise, K = I, 
and Cpiu logistically distributed. 
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In item response modeling applications, persons typically respond only 
once to the items, hence, from now On we will use Vpi and Cpi instead of 
Vpiu and Cpiu. The distribution ofthe intercept in the population of persons 
forms the between-person or level-2 model: 

(5.6) 

with (]"~ as the variance over persons (the alternative is the variance over 
(p) 

groups; see further). 
An alternative way to formulate the model, which is common in the 

multilevel literature, is to use the formulation 

with 

K 

Vpiu = ()po + L ()pkXiuk + Cpiu, 

k=l 

()pO "-' N((), (]"~(p))' 
()pl=ßl, 

We will not pursue this way of formulating models in the following. 

(5.7) 

Equations 5.4 and 5.5 are equivalent if one defines Ypi = 1 iff Vpi > 0, 
and Ypi = 0 otherwise, with the fixed effects of the item indicators in the 
multilevel logistic model (Equation 5.5) corresponding to minus the item 
difficulty parameters (-ß) of Equation 5.4. From now on, we will no longer 
use the model formulation with the continuous underlying variable as in 
Equations 5.5, but instead the logit formulation as in Equation 5.4 will be 
used. 

The Rasch model is a descriptive 2-level model, since the person abilities 
and the item difficulties are not related to properties of persons or items. 
The only predictors that are included in the model are the item indicators 
and the level-independent constant predictor. In latent regression models, 
on the contrary, the latent person abilities are described as a linear com­
bination of one or more person properties and an error term. While in the 
descriptive 2-level model described above, the intercept varies completely 
randomly over persons, in the latent regression 2-level model, the intercept 
varies partly randomly, partly according to person properties. A latent re­
gression model therefore is a specific instantiation of what in the multilevel 
literature is often called an intercepts-as-outcomes model. The first level 
model remains unchanged (see Equation 5.5), but on the second level the 
intercept is regressed on person properties, the Zs. To ease the interpreta­
tion, predictors can be centered (Snijders & Bosker, 1999). Note that the 
meaning of the intercept differs depending upon which kind of centering is 
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used. The second level model for Opo now reads as: 

J 

Opo = L: 1)j Zpj + Ep, 
j=1 

(5.8) 

with 1)j as the fixed effect of person predictor, and with Ep rv N(O, (y~ ). 
(p) 

5.4 Application of the descriptive and the latent 
regression 2-level model to the verbal 
aggression data 

To illustrate the 2-level models, we reanalyze the verbal aggression exam­
pIe described in Chapter 1. In Chapter 2, the parameters of the Rasch 
model and of the latent regression model were estimated using the pro­
cedure NLMIXED from SAS. Since these models are in fact hierarchical 
generalized linear models, specialized software for multilevel models can 
also be used, such as MLwiN and HLM. 

In the second column of Table 5.4, the parameter estimates and cor­
responding standard errors of estimation are presented for the unknown 
parameters of the descriptive 2-level model with binary item indicators. 
The same results are reported in Table 12.3 of Chapter 12. The estimates 
were obtained by means of the PQL2 procedure of MLwiN, calling in each 
step the RIGLS algorithm to obtain the restricted maximum likelihood es­
timates of the linearized model (see also Chapter 12). The estimates are 
quite elose to those of the procedure NLMIXED from SAS (see Chapter 
2). Using PQL2 should reduce the downward bias inherent to PQL, as 
explained in Chapters 4 and 12. 

For each item, there is one estimated regression coefficient, to be inter­
preted as minus the item difficulties, and indicating how the average person 
tends to react in a specific verbally aggressive way and in a specific situa­
tion. Besides the fixed item parameters, MLwiN also returns the variance 
estimates for the residuals. The estimate of the between persons variance 
(this is (Y02 from Equation 5.6) given by MLwiN equals 1.87, with a SE of 

(p) 

.17. Comparing the ratio of the estimate and the SE to a standard normal 
distribution, reveals that the differences between participants are highly 
significant (z = 10.90, p <.001). Note that because ° is the boundary for 
variances the p-values are conservative (see Section 4.6.2 of Chapter 4). 

That the propensity to react in a verbally aggressive way differs from 
person to person raises the question of how to explain this variance. There­
fore, we extend the model to a latent regression model, by regressing the 
level-1 intercepts on the person properties Gender and Trait Anger (see 
Section 5.9.1 for the MLwiN model formulation). The results are given in 
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TABLE 5.2. Parameter estimates and standard errors for the 2-level models using 
MLwiN (verbal aggression data). 

Estimate (SE) 

Descriptive Latent 
model regression 

Fixed effects of 
Bus Want Curse 1.22 (.16) .01 (.38) 
Bus Want Scold .56 (.15) -.65 (.37) 
Bus Want Shout .08 (.15) -1.14 (.37) 
Train Want Curse 1.74 (.17) .53 (.38) 
Train Want Scold .71 (.15) -.51 (.37) 
Train Want Shout .01 (.15) -1.20 (.37) 
Store Want Curse .53 (.15) -.69 (.37) 
Store Want Scold -.69 (.16) -1.90 (.38) 
Store Want Shout -1.53 (.17) -2.74 (.38) 
CaU Want Curse 1.08 (.16) -.13 (.38) 
CaU Want Scold -.35 (.15) -1.57 (.37) 
CaU Want Shout -1.04 (.16) -2.26 (.38) 
Bus Do Curse 1.22 (.16) .01 (.38) 
Bus Do Scold .39 (.15) -.83 (.37) 
Bus Do Shout -.87 (.16) -2.09 (.38) 
Train Do Curse .87 (.16) -.34 (.37) 
Train Do Scold -.06 (.15) -1.27 (.37) 
Train Do Shout -1.48 (.17) -2.70 (.38) 
Store Do Curse -.21 (.15) -1.43 (.37) 
Store Do Scold -1.50 (.17) -2.72 (.38) 
Store Do Shout -2.96 (.23) -4.18 (.42) 
CaU Do Curse .71 (.15) -.51 (.37) 
CaU Do Scold -.38 (.15) -1.60 (.37) 
CaU Do Shout -1.99 (.18) -3.21 (.39) 

Gender .32 (.19) 
Trait Anger .06 (.02) 

Variance components 
Level 2 (persons) 1.87 (.17) 1.81 (.17) 

the last column of Table 5.4. The coefficient of Gender (.32) is not statis­
ticaUy significant (z = 1.68, p > .05). The effect of Trait Anger (.06) on 
the contrary is statisticaUy highly significant (z = 3.00, p < .001): Persons 
with a higher score on the Trait Anger scale of the STAXI questionnaire 
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(Spielberger, 1988) generally react in a more verbally aggressive way. 
Table 5.4 further reveals that adding the person properties affects the 

item parameter estimates. The parameters however have a different mean­
ing in the two models. In the descriptive model, an item parameter refers 
to the expected logit of the probability of aI-response from an average 
person. In the latent regression model, the expected logit of the probability 
of aI-response for an average person is calculated by filling in the average 
values of the person properties into the regression equation. According to 
the latent regression model, the expected logit for an average person and 
for the first item is .007 + .317*.231 + .057*20.003=1.220, which is also 
the value of the item parameter of the descriptive model. To ease the in­
terpretation of the item parameters, one could center the person properties 
around their means. The resulting item parameters are comparable with 
the item parameters from the descriptive model. 

The estimate of the (residual) variance between persons is 1.81. Compar­
ing this estimate with the estimate of the descriptive 2-level model (1.87) 
reveals that a (small) part of the differences in person abilities is explained 
by the person properties Gender and Trait Anger. Note that we did not 
use any fit statistics based on the likelihood to evaluate the absolute or 
relative model fit, because PQL2 uses only an approximate likelihood, not 
the 'real' likelihood. As a result, fit statistics based on the likelihood are 
also only very approximate and should not be used for testing the model 
fit (Hox, 2002). Therefore, MLwiN does not report the likelihood statistic 
for generalized multilevel models. Instead, it is recommended to use the 
Wald test, although the results of this test also should be used with care, 
especially for testing the variance components (Goldstein et al., 1998). 

5.5 Models with three or more levels 

In many applications, persons belong to groups. It is important to model 
group memberships or hierarchical structures in the data because they 
may induce dependencies in the data (between responses from different 
persons). For instance, pupils from the same class are usually more alike 
than pupils from different classes, because of selection effects or because of 
a common social and didactic context. Sometimes, the groups are regarded 
as unique and the researcher wants to draw conclusions regarding each of 
these particular groups. The researcher for instance may want to compare 
males and females, as in the previous application. For that purpose, binary 
indicators can be used to indicate the group the person belongs to, and these 
variables can be included in the second level model as person properties 
with fixed effects. The resulting model is thus another latent regression 
2-level model, as illustrated for Gender in the previous application. 

Sometimes however, groups can be considered to be merely a sampIe 
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from a population of groups. For instance, classes or schools pupils belong 
to may be considered as elements of a population of classes or schools. While 
researchers are typically not primarily interested in the specific classes or 
schools in the sampie, it is interesting to obtain an overall idea of the in­
fluence of the class or school on the individual scores. When the groups are 
seen as randomly drawn from a population of groups, the group effects are 
modeled as random rather than as fixed effects. This can again be done by 
using binary group indicators as person predictors. This time, however, the 
weights of the group indicators are defined to vary randomly over groups, 
with a common population variance. However, a more economical way to 
model the random group effects is to define a random group weight for the 
constant predictor, a weight that varies randomly over groups. This means 
that the models that were presented in the preceding sections are extended 
by defining an additional level of units, resulting in a 3-level model: mea­
surement occasions (1st level) can be grouped according to the person (2nd 
level) they stern from, while the persons in turn are nested in groups of per­
sons (3rd level). The model on the first level remains unchanged except for 
an additional index g, indicating the level-3 units: 

K 

TJgpi = e gpO + L ßkXik, 

k=l 

(5.9) 

with index 9 referring to person group g. The use of an index g, in addition 
to the p index, allows persons to be numbered within each person group 
separately, as is COmmon in multilevel research. 

On the second level, the level of persons, the person abilities e gpO are 
defined to vary randomly over persons around a group-specific mean egO, 

with a variance equal to <T; : 
(p) 

(5.10) 

with Egp rv N(O, <T; ). Equation 5.10 assurnes that the variance between 
(p) 

persons (<T; ) is the same for all person groups. The model can easily 
(p) 

be extended to allow heteroscedasticity, by defining the ES as the random 
effects of group indicators, instead of as the effects of an overall constant 
predictor, as will be discussed below. 

On the third level, the mean person ability varies randomly over groups, 
with a variance equal to <T~ . To identify the model, the overall mean of 

(g) 

the person abilities is assumed to be zero: 

egO rvN(o,<T~(g)). 

Combining Equations 5.9 and 5.10 in a single equation, results in: 

K 

TJgpi = egO + L ßkXik + Egp . 

k=l 

(5.11) 

(5.12) 
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Because in the model neither the item difficulties nor the person abilities 
are explained, this model can be called a descriptive 3-level model. In Figure 
5.3, the systematic component of the descriptive 3-level model is presented, 
with random effects on the person level and on the level of groups of per­
sons. Note that, for simplicity, the random component and the logit link 
are omitted from Figure 5.3, and this will also be the case in the following. 

I llgpi , 

----'''' ---
( 9gpo 

--/ L , 
Egp ' I 9g0 

FIGURE 5.3. Graphical representation of a descriptive 3-level model. 

It is possible to combine person properties with fixed or random effects 
and person groups with random effects. Pupils can be grouped according 
to the class they belong to (random effect), while the researcher is possibly 
also interested in differences between male and female pupils (fixed effect). 
In this case, one may extend the descriptive 3-level model by including 
person properties as predictors on the second level (as in the 2-levellatent 
regression model described above). Because in such a 3-level model, the 
latent person abilities are regressed on person predictors, this model could 
be called a 3-level model with latent regression on level 2. On the second 
level, the level of persons, Equation 5.10 must be adapted in order to de­
scribe the variation in person abilities around the group means as partly 
random, partly as a function of an external person predictor: 

J 

()gpO = ()gO + L::: (gjZgpj + Egp , 

j=l 

(5.13) 

with Egp rv N(O, a; ). The effects of the external person predictors (the 
(p) 

Zs) possibly depend on the group. Therefore, (gj with subscript g is used 
for the weights of the person properties with (gjpossibly being random 
over groups. If the effects of the person properties are fixed and the same 
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for each group, the (9j = {}j for all j. The model with fixed effects for the 
person properties is presented graphically in Figure 5.4. 

, 
I T]gpi ,: 

---"", ---

~, 8gpQ 

__ /"1 
, 

f:gp , 

FIGURE 5.4. Graphical representation of a 3-level model with latent regression 
on level 2. 

Note that the data analyst usually will not be satisfied when finding 
random effects on the level of groups, but rather will be challenged to 
explain the variation. This can be done in a similar way as we did for 
investigating the variance between the person abilities on level 2. Higher 
level predictors can be included in the model, resulting in a 3-level model 
with latent regression on level 3. For instance, random school effects could 
be further described using school predictors with fixed effects (e.g., school 
size ). 

Also, higher-order grouping variables may be defined (e.g., the region or 
state the school is situated in), yielding a 4-level model, with measurement 
occasions, persons, schools and regions being the units on the respective 
levels. Also on this fourth level a latent regression may be defined. Note 
that an aggregated predictor of a lower level can be used as a higher level 
predictor. A variable therefore can have effects on different levels. It is for 
instance possible that the performance of an individual pupil depends not 
only on the individual gender, but also on the proportion of girls in the 
school the pupil belongs to (this is the school mean of a dichotomous pupil 
variable, e.g., with female coded 1, male coded 0). 
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5.6 Application of 3-level models to the 
mathematics and science data 

To illustrate models with three or more levels, we use a data set from CTB -
McGraw HilI. The mathematics and science data set includes the results of 
1500 grade 8 students from 35 schools. Each of the students responded to 76 
items, measuring different objectives and subskills related to mathematics 
and science. Since in this chapter the discussion is restricted to models 
with a dichotomous outcome variable, we use only the responses on the 56 
multiple-choice items (among the 76 items, item 1 to 31, and item 42 to 
66), which are coded 0 (wrong response) or 1 (correct response). 

TABLE 5.3. Parameter estimates and standard errors for 3-level models with and 
without latent regression on level 2 and 3 (mathematics and science data). 

Fixed effects of 
Iteml 
Item2 

Item65 
Item66 
Gender 
Catholic 
Other private 
Public 
Bachelor 

Variance components 
Level 3 (schools) 
Level 2 (students) 

Estimate ( SE) 
Descriptive model Latent regression 

1.02 (.11) 
1.11 (.11) 

-.22 (.11) 
-.30 (.11) 

.29 (.08) 

.63 (.03) 

1.07 (.12) 
1.16 (.12) 

-.16 (.12) 
-.25 (.12) 
-.09 (.04) 
.35 (.29) 

-.34 (.26) 
.00 ( - ) 

.23 (.09) 

.22 (.07) 

.63 (.03) 

In the procedure NLMIXED from SAS, the effects may be random over 
only one kind of unit. In other words, the NLMIXED procedure does not 
allow one to define more than two levels and, thus, cannot be used for 
the example. Therefore, we use the SAS macro GLIMMIX (Wolfinger & 
O'Connell, 1993), in which both marginal and penalized quasi-likelihood 
procedures (MQL and PQL, respectively) for fitting generalized linear mixed 
models are implemented (see Chapter 12). We start with a descriptive 3-
level model, with measurement occasions, students and schools. This is a 
random intercept model in which (only) the intercept varies completely 
randomly on each level. The SAS code for the example (using GLIMMIX) 
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is described in Section 5.9.2. The results are given in Table 5.3. 
In the first part of the table, the estimates of the fixed coefficients are 

given, which can be interpreted as minus the item difficulties. These para­
meter estimates (which are not all reported here) vary from -1.58 to 2.59 
(items 29 and 15 respectively). Standard errors are given as weIl. Further­
more, it is clear that the success rate (probability of al-response) does not 
depend on the items only, but on the students and schools as weIl. There 
are substantial differences between students within the same school (the 
variance is .63, Z = 21.00, p <.001). To obtain an idea of the size of this 
between-student variance, we can calculate the prob ability of al-response 
for a student with an ability that is one SD lower and for a student with an 
ability of one SD higher than the ability of a student with a .50 prob ability 
of a I-response on a specific item. These probabilities are .31 and .69, or 
exp( -V-63)/(l+exp( -V-63)) and exp( V-63)/(l+exp( V-63)), respectively. 
There is also evidence for differences between schools (the variance is .29, 
Z = 3.63, p <.001), though these differences are smaller. If for a specific 
school the probability of al-response is .50, the probability is .37 and .63 
for a school with an ability of one S D lower or higher, respectively. 

In the next step, we introduced student and school characteristics as 
predictors in the model, in an attempt to explain the differences in the 
performance levels of students and of schools. On the second level, the stu­
dent level, the intercept is regressed on Gender (female = 1, male = 0). 
On the third level, the schoollevel, School Type and the Educational Level 
of the region the school is located in were included to explain the inter­
cept. Three types of schools are involved: Catholic schools, other private 
schools, and public schools. For the Educational Level, a transformed and 
standardized variable indicating the percentage of adult residents with at 
least a Bachelor's degree was determined for each school zip code. This 
group predictor is called Bachelor in Table 5.3. The SAS-code to estimate 
the parameters of this 3-level model with latent regression on the second 
and third level using the GLIMMIX macro is given in Section 5.9.2. The 
results are given in the last column of Table 5.3. Note that SAS uses the 
last category of a categorical variable (in this case the category 'Public' for 
School Type) as the reference category. 

Comparing the variance estimates for the previous random intercept 
model and this latent regression model, we conclude that the inclusion of 
the school and student predictors results hardly at all in a reduction of the 
unexplained variance between students. The estimate of the between-school 
variance is reduced from .29 to .22, but it remains relatively large (z = 
3.14, p <.001). The results further indicate that female students performed 
slightly worse, a difference that is statistically significant (z = -2.25, p < 
.05): If for male students the probability of a I-response on a specific item is 
.50, the predicted probability for female students from a comparable school 
is .48 corresponding to exp(O)/(l +exp(O)) and exp( -.09)/(1 +exp( -.09)), 
respectively. The evidence for the effect of the percentage adults with at 
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least a Bachelor's degree is more convincing. The effect is .23, Z = 2.26, 
p < .05. Finally, the predicted probability of aI-response is highest in 
Catholic schools, and lowest in other private schools. If in a public school 
the expected probability is .50, it is .59 in Catholic schools and .42 in 
other kinds of private schools. To evaluate the effect of categorical predic­
tors (e.g., School Type), modeled with two or more binary indicators, one 
can look at the results of the F-tests that are automatically performed for 
each predictor with fixed effects when running GLIMMIX, and found in 
the output under the heading 'Type 3 tests for fixed effects.' The F-values 
are based on the so-called Type In SS, which are the reduction in error 
SS due to adding the term after all other terms have been added to the 
model except terms that contain the effect being tested. According to this 
test, the effect of the School Type is not significant (F(2,82407) = 1.98, 
p> .10). 

5.7 Model extensions 

The use of the framework of multilevel modeling suggests several extensions 
for the descriptive and latent regression models we discussed so far. We will 
explore briefly some of these extensions. 

First, the discussion in this chapter was restricted to models that are 
descriptive on the item side. In the multilevel model, item indicators with 
fixed effects were included as characteristics of the level-l units, the mea­
surement occasions. Instead of the item indicators, externally observed item 
properties can be included in the model as level-l predictors, resulting in 
explanatory models for the item side. The model looks the same as the 
descriptive and the latent regression models described above, but this time 
the level-l predictors are not item indicators but rather item properties, 
whose number is typically smaller than the number of items, K < I (see 
Chapter 6). 

Second, in this chapter we focused on multilevel models in which only the 
intercept of the level-l equation varies on higher levels. It is also possible 
that one or more other regression coefficients of the level-l equation varies 
over persons. Equation 5.14 extends the 2-level latent regression model, 
by allowing that besides the intercept, the weight of the first item prop­
erty varies over persons, partly randomly, and partly according to person 
properties: 

K 

'r}pi = Opo + Op1Xi1 + L: ßkXik, 
k=2 

J 

Opo = L: 7'J jo Zpj + cpo, 
j=l 

J 

Opl = L: 7'J j1 Zpj + Cpl, 
j=l 

(5.14) 
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with {)jO and {)jl as the fixed effects of predictor j on the random intercept 

and the effect of the first item property, respectively; with ep = ( cpo ) rv 

cpl 
N(O, :E), where 0 is a vector of zero means and :E is the variance-covariance 
matrix of the random effects. As for the preceding models, if one finds that 
the effect of the constant predictor varies over persons, this means that 
persons differ in their overall performance. In the model of Equation 5.14, 
however, persons also can differ in the effect of an item property. Thus, 
instead of one, two kinds of abilities are modeled; see Chapter 8 for a 
discussion of such models. Note that {)jl indicates how large the effect is of 
the jth person predictor on the random effect of the first item predictor. 

Third, the items were assumed to be fixed. Item indicators were used as 
level-l predictors with fixed effects. Sometimes however, it is plausible to 
consider the items to be a random set. If both items and persons are con­
sidered tü be random, the model includes random item effects and random 
person effects. Items and persons therefore are not modeled with binary 
indicators, but rather define two sources of random variation. The data 
structure is not hierarchical anymore, since items are not nested within 
persons, and persons are not nested within items. Rather we have a model 
with observation occasions (1st level) nested within items and within per­
sons (2nd level). Since we can distinguish two kinds of classification on the 
same level which are crossed in the design, the model is often called a cross­
classification model or a crossed random-effects müdel (Goldstein, 1987a; 
Raudenbush, 1993). For an application of crossed random-effects models 
in psychometrics, see Van den Noortgate, De Boeck and Meulders (2003). 
Models with randomly varying item effects are discussed in Chapter 6. 

Finally, the models can be adapted to allow für heteroscedasticity from 
the second level on. Heteroscedasticity refers to the phenomenon that the 
residual variance depends on the level of a predictor. To model heteroscedas­
ticity, a property is assumed to have random effects for the units it de­
scribes. For instance, let us look back at the descriptive 2-level model 
(Equations 5.5 and 5.6). Suppose that on the second level a person prop­
erty Zl, such as age, is added to explain the random intercept, and that the 
effect of this person property is defined to be random over persons. Then, 
it füllows that 

(5.15) 

with e = ( cpo ) rv N(O, :E). As a result, the variance between persons 
p (pl 

is not constant anymore, but is a quadratic function of the age: 

(5.16) 

In case the variance depends on the person group, groups can be dummy 
coded with as many indicators as there are groups, and the effect of the 
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indicators is defined to be random over persons. For example, to estimate 
the within-group variance for males and females separately, two binary 
indicators are used (Zp Male and Zp Female), each with an effect that varies 
at random over persons ((p Male and (p Female , respectively): 

()pO = (p MaleZp Male + (p FemaleZp Female· (5.17) 

It is necessary to fix the covariance of ()p Male and ()p Female to zero, since 
there is no information available on their correlation. 

5.8 Concluding remarks 

Since their appearance in the literature during the 1980s (Goldstein, 1987b; 
Raudenbush, 1988), hierarchical (generalized) linear models have become 
more and more popular in an increasing number of research domains. One 
of the main reasons for the success of the models is their fiexibility. In 
this chapter, we showed that hierarchical generalized linear models can 
be useful in item response modeling applications. In fact, the commonly 
used item response models can be reformulated as hierarchical generalized 
linear models, as shown before (e.g., Adams, et al. , 1997; Kamata, 2001; 
Raudenbush & Sampson, 1999). For example, the simple Rasch model and 
the latent regression model are a descriptive and a latent regression 2-level 
model respectively. We showed how these models can be extended by in­
cluding one or more additional levels, in order to model random person 
group effects, thereby extending the traditional item response models. For 
the latest developments of hierarchical (generalized) linear models, includ­
ing the parameter estimation and testing, see for example, Raudenbush 
and Bryk (2002), Goldstein (2003), Hox (2002), and Snijders and Bosker 
(1999) . 

5.9 Software 

5.9.1 2-level models (verbal aggression data) 

For the latent regression model from Section 5.4, with two person predictors 
(TA and Gender) , the model formulation using MLwiN reads as folIows: 

Code 

logit(1Tij) = ß2itemlij + ß3item2ij + ß4item3ij + ß5item4ij+ 
ßsitem5ij + ß7item6ij + ßs item7ij + ß g item8ij + 
ß lO item9ij + ßlliteml0ij + ß12iteml1ij + ß13item12ij+ 
ß14i tem13ij + ß15item14ij + ß1Si tem15ij + ß17i tem16ij + 
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ßlsitem17ij + ß19item18ij + ß2oitem19ij + ß21item20ij+ 
ß22i tem21ij + ß23i tem22ij + ß24item23ij + ß25item24ij + 
ß26Genderj + ß27TAj + UljCOnS 

Comments 

1. For the descriptive 2-level model, the terms ß26Genderj and ß27TAj are 
omitted. 
2. Other aspects of the model setup and parameter estimation with MLwiN 
are explained in Chapter 12 and on the website indicated in the Preface. 

5.9.2 3-level models (mathematics and science data) 

Code for the descriptive 3-level model 

%glimmix(data=MASC, procopt = covtest, 
stmts=%str(class school student; 
model score=iteml item2 item3 item4 item5 item6 item7 
item8 item9 iteml0 itemll item12 item13 item14 item15 
item16 item17 item18 item19 item20 item21 item22 item23 
item24 item25 item26 item27 item28 item29 item30 item31 
item42 item43 item44 item45 item46 item47 item48 item49 
item50 item51 item52 item53 item54 item55 item56 item57 
item58 item59item60 item61 item62 item63 item64 item65 
item66 /solution noint; 
random intercept/sub=student(school); 
random intercept / sub = school; 
parms .5 .5 1 /eqcons = 3;), error = binomial); run; 

Code for the latent regression 3-level model 

%glimmix(data=MASC, procopt = covtest, 
stmts=%str(class school student gender type; 
model score=iteml item2 item3 item4 item5 item6 item7 
item8 item9 iteml0 itemll item12 item13 item14 item15 
item16 item17 item18 item19 item20 item21 item22 
item24 item25 item26 item27 item28 item29 item30 
item42 item43 item44 item45 item46 item47 item48 
item50 item51 item52 item53 item54 item55 item56 
item58 item59item60 item61 item62 item63 item64 
item66 gender type bachelor /solution noint; 
random intercept/sub=student(school); 
random intercept / sub = school; 

item23 
item31 
item49 
item57 

item65 

parms .5 .5 1 /eqcons = 3;), error = binomial); run; 
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Comments 

1. Because for the latent regression 3-level model of the second example, 
only the fixed part of the model has changed, the random statements of the 
second example are the same as those of the first. 
2. The model statement is adapted in the second example by including 
three more independent variables: gender, type, bachelor. Because Gen­
der and School Type are categorical variables, they are included in the 
class statement as weIl (as gender and type, respectively). 

5.10 Exercises 

1. The item indicators used in the Rasch model can be seen as observation 
occasion properties. Explain why that is so and where the error term of the 
level-1 units can be found. 

2. Use MLwiN to reanalyze the verbal aggression data using the latent 
regression 2-level model (see Chapter 2), but now with PQL. The differ­
ence between PQL and PQL2 is explained in Chapter 12. 

3. In Section 5.6, the mathematics and science data have been analyzed 
using a descriptive 3-level model. In traditional item response modeling, 
levels above the person level (e.g., the level of schools) are usuaIly ignored. 
Use GLIMMIX to explore the consequences of ignoring a higher level for 
the results of the analysis, by comparing the parameter estimates of the 
example with those obtained using a 2-level model. 

4. Adapt the descriptive model for the mathematics and science data to 
check if the within-school variance depends on the school type (Le., a case 
of heteroscedasticity). Use GLIMMIX or MLwiN to estimate and test the 
parameters. 

5. Check to what extent mathematics is aseparate source of individual 
differences in the mathematics and science data. See the last extention in 
Section 5.7. It is recommended to read Chapter 8 first, but use MLwiN for 
the estimation. 
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Chapter 6 

Models with item and 
item group predictors 

Rianne J ans sen 
J an Schepers 
Deborah Peres 

6.1 Introduction 

In the present chapter, the focus is on extending item response models on 
the item side. Item and item group predictors are included as external fac­
tors and the item parameters ßi are considered as random effects. When 
the items are modeled to come from one common distribution, the models 
are descriptive on the item side. When item predictors of the property type 
are included, the models are explanatory on the item side. Item groups are 
a special case of item properties. They refer to binary, non-overlapping 
properties indicating group membership. The resulting models with item 
properties can all be described as linear logistic test models (LLTM; Fis­
cher, 1995) with an error term in the prediction of item difficulty. When this 
random item variation is combined with random person variation, models 
with crossed random effects are obtained. All models in this chapter are of 
that kind. 

The idea of random item variation is relatively uncommon in item re­
sponse modeling. Traditionally, item effects are treated as fixed. There are 
a few exceptions to the fixed-item approach. For example, in the Bayesian 
estimation of standard item response models like the Rasch model (e.g., 
Swaminathan & Gifford, 1982) one assurnes that the items come from a 
particular prior distribution. This can be seen as a random-effects model 
for the items with only one item group. One can have several reasons for 
considering such a model. For example, perhaps the test is seen as a rather 
homogeneous set of items without a design and with the single purpose 
of measuring the latent dimension. As another example, the test may be 
inspired by the theory of domain-referenced testing. A domain represents 
the knowledge and skills required for mastery of a specific content area. 
It refers to a universe of items. Test items are considered to be a random 
sampIe from this universe. The domain score is the prob ability of success 
on a randomly selected item of the domain. 

Recently, there has been a renewed interest in Bayesian data analysis 
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(e.g., Gelman, Carlin, Stern & Rubin, 1995). In particular Gibbs sampling 
techniques gave new possibilities for the estimation of item response mod­
els (see e.g., Beguin & Glas, 2001; Maris & Maris, 2002; Patz & Junker, 
1999). Using this approach, models with random item effects have also been 
proposed. Bradlow, Wainer and Wang (1999) extended the basic two- and 
three-parameter item response model with a random person-by-item ef­
feet to account for the effect of testlets. Glas, Wainer, and Bradlow (2000) 
showed that this model is a special case of bi-faetor analysis with one 
general ability dimension and a specific ability dimension for each test­
let. However, this is not what we mean by random item effeets. Janssen, 
Tuerlinckx, Meulders, and De Boeck (2000) included item group predictors 
into the two-parameter item response model and Glas and Van der Linden 
(2002) did the same for the three-parameter model. In these hierarchical 
item response models, items are nested within item groups. Within each 
item group, the item parameters are modeled as random and the item group 
parameters are treated as fixed. Mislevy (1988) had already extended the 
LLTM with an error term using item properties other than item groups. 
For this model, Janssen, De Boeck, and Schepers (2003) proposed a Gibbs 
sampling scheme. 

In the following, the item side of models with random item variation 
is described, for (a) the general case where item properties are used, and 
(b) for the more particular case where item groups are used as predictors. 
Next, the full model is presented including the person side as weIl. It will 
be explained how a Bayesian approach with the Gibbs sampIer can be used 
for such a model. FinaIly, two applications are described. 

6.2 The model on the item side 

6.2.1 Item predictors 

The LLTM as a starting point 

In the verbal aggression data set, the items were constructed according to 
an orthogonal design with the Situation Type, Behavior Type, and Behav­
ior Mode as factors of the design (see Table 1.1). In Chapter 2, these item 
predictors were used in aLLTM. The LLTM assumes that item difficulty 
is equal to a linear combination of the X ik : 

K 

ß~ = LßkXik' 
k=O 

so that ßf = ßi. However, this is a strong assumption. It implies that 
item difficulty can be perfectly predicted by the item properties. For the 
verbal aggression data, a high correlation was found between ßf and ßi, 
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but the correlation was not perfect, implying that the Rasch item difficulty 
parameters ßi deviated from the item effects ß~ predicted by the linear 
combination of item properties. In fact, such deviations are a common 
finding in applications of the LLTM. As a result, the goodness of fit of the 
model is almost invariably inferior to that of the Rasch model, resulting 
in a significant likelihood ratio test. This is not surprising: In the LLTM 
the I item indicators of the Rasch model are replaced with K < I item 
predictors. 

Adding random item variation 

As a relaxation of the LLTM, suppose that the Rasch item difficulties ßi 
can be described by a regression model with item predictors X ik : 

K 

LßkXik +ci, 
k=O 

ß~ + Ci, 

with Ci ""' N(O, an or, equivalently, 

Interpretation of the random item variation 

(6.1) 

(6.2) 

Equations 6.1 and 6.2 describe a model with item predictors as external 
factors and with random item variation. The model in Equation 6.1 stresses 
a random error interpretation of the random item effect. Items have a 
structural part, which is described by the linear combination of the item 
predictors, and an item-specific deviation part, which is described by the Ci. 

As in regression analysis, a; refers to the residual variance in the regression 
of the ßi on the item predictors X ik . The smaller a; in comparison with 
the total variance of the ßi, the better the explanatory power of the item 
predictors. 

Another interpretation is that the item parameters ßi are randomly sam­
pled. This is stressed in the formulation of the model in Equation 6.2. Items 
that share the same values on the item predictors belong to the same item 
population. Given these values, the items in the test are considered as ex­
changeable. Each item population is characterized by an expected difficulty 
ß~ and a within-population variance a; of item difficulty. Individual items 
in the test are seen as a random sample from this population and their 
difficulty ßi may therefore differ from ß~. 

Literature and type of applications 

In a sense, Fischer (1995) hinted at the possibility of a random-effects 
version of the LLTM with both of the above interpretations. He stated 
that 
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" ... if the formal model of item difficulty specified by an LLTM 
for a given item universe is at least approximately true, it should 
be possible to predict item difficulty for new items of the same 
universe in new sampIes of persons" (p. 148). 

The fact that a model for item difficulty can be approximately true refers 
to a random error interpretation. The prediction of item difficulty for new 
items refers to a random sampling interpretation. 

Mislevy (1988) proposed the model in Equation 6.1 to show that one 
can gain information, and, hence, increase the precision of estimation of 
the item difficulty parameters of a Rasch model by exploiting the auxiliary 
information about the items as described by the item properties. Sheehan 
and Mislevy (1990) illustrated that in this way one can integrate a cognitive 
theory ab out the items with the psychometrie information as found in a 
calibration study. Janssen et al. (2003) furt her discussed the LLTM and 
the random-effects extension of the LLTM as in Equation 6.1. 

6.2.2 Itern groups as predictors 

The model 

The random sampling interpretation is especially apt when the items are 
partitioned in item groups (item populations). In that case, Equation 6.2 
can be rewritten to describe the item difficulty ßig of item i belonging to 
group g: 

(6.3) 

where ßg indicates the item group effect and CT; the within-group variance. 
In Equation 6.3, ßg represents the linear combination of G item group 
indicators X ig : 

ßig rv N (t ßgXig , CT;) , 
g=l 

(6.4) 

where G ~ 1. Equation 6.4 shows that models with (non-overlapping) item 
groups as predictors and models with item predictors differ only in the kind 
of predictors. 

Equations 6.3 and 6.4 describe a simple multilevel model for the items. 
There are only two levels: Individual items and item groups. The group 
weight ßg is fixed. Further extensions are possible. First, one may consider 
a three-level structure where the groups of items are themselves sampled 
from a larger population of item groups. The item groups may refer to dif­
ferent subdomains (or subtests) that belong to one general, unidimensional 
domain (or test). For example, for reading comprehension as a general do­
main, a sam pIe of reading texts of varying general difficulty can be drawn, 
and for each text a sampIe of items can be presented. Second, in Equation 
6.3 or 6.4 it is also assumed that all item groups have the same within-group 
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variance. Models with group-specific variances are possible. Of course, such 
heteroscedastic models require data sets with a sufficiently large number of 
items in each item group to estimate the variances in a reliable way. 

Litemture and type of applications 

The two-level model On the item side can be applied in test designs where 
the items in the test are considered to be a random sampie from a larger 
population of items. In such cases, sets of items in the test can be considered 
as exchangeable given group membership. Consequently, the (fixed) group 
effects become the focus of interest rat her than the individual item effects. 

As a first example of application, Janssen et al. (2000) applied their 
multilevel item model to a test design for domain-referenced measurement. 
They analyzed a test where the items were partitioned according to several 
curriculum standards in reading comprehension for primary education in 
Flanders. Each curriculum standard specified a required level of processing 
(describing, structuring, or evaluating) and a type of text (e.g., school texts, 
stories, or advertisements). All curriculum standards referred to one com­
mon, underlying dimension of reading comprehension, but their average 
difficulty differed. Every student received a domain score on each curricu­
lum standard. The domain score was estimated by calculating the success 
prob ability on a typical, fictitious item of the domain, namely an item with 
difficulty equal to the mean of the item distribution of the domain. The 
domain score was calculated as 

exp (Bp - ßg) 

1 + exp (Bp - ßg)" 

Using cut-off points on the domain score scale, examinees were classified in 
different levels of mastery for each domain. 

As a second example, Glas and Van der Linden (2002) referred to the area 
of automated item generation as a field of application of their multilevel 
model on the item side. In automated item generation (e.g., Bejar, 2002; 
Embretson, 1999), items are considered to be clones from a parent, but the 
cloning is not perfect, making individual item variation possible. Hence, 
each parent characterizes a distribution of items. The expected value of 
the parent distribution is the item parameter of a typicalor 'average' item 
of the parent. The variance of the parent distribution indicates how strongly 
individual item parameters deviate from the typical item. In some testing 
situations, a person's ability parameter Bp can then be estimated by using 
the fixed (hyper)parameters that describe the parents' distribution, and by 
treating the item parameters as random. Note that in their two-level item 
response model, Glas and Van der Linden (2002) only described the parents 
as item groups without a design (Equation 6.3). Another way of modeling 
automatically generated items is to describe them as being generated from 
a parent that is defined by a set of item design variables, and, hence, use a 
model with item properties (Equation 6.1). 



194 Rianne Janssen, Jan Schepers, Deborah Peres 

6.3 The full model 

6.3.1 Fixed person effects 

Equations 6.1 to 6.4 describe only the systematic component of the item 
response model for the item mode. Hence, they should be complemented 
with a model for the person mode. In principle, the person effects can 
be considered either as fixed or as random. As noted in the Introduc­
tion to Part 11 and in Chapter 12, fixed person effects are equivalent to 
a joint maximum likelihood formulation of the model. Modeling the per­
sons' main effects with fixed rather than random effects is generally not the 
best choice. First, it is not in line with the standard statistical formulation 
for the person side. It is common to consider persons as sampled from a 
population of persons. Second, models with fixed person weights require 
a large number of person predictors (one indicator per person) and con­
sequently also a large number of parameters. Third, when combined with 
fixed item effects, inconsistent estimates are obtained (Haberman, 1997). 
Some software packages for GLMM such as the NLMIXED procedure from 
SAS do not allow for crossed random variation. A possible way out would 
be to use fixed person effects. However, it is unclear what the quality of 
the estimated predictor weights would be in such a model. For example, 
using NLMIXED for the verbal aggression data, the estimates were quite 
different for the regular LLTM with fixed versus with random effects for 
the persons. These practical estimation problems and the earlier mentioned 
more theoretical problems have discouraged us from pursuing models with 
fixed person effects. 

6.3.2 Random person effects 

Complementing Equations 6.1 to 6.4 with random person weights leads to a 
two-mode random-effects model or crossed random-effects model. When the 
random person effects concern the intercept, the conditional formulation of 
the full model reads as: 

K 

'l]pi = BpZpo - L ßkXik + Ci, 

k=O 

(6.5) 

with Bp rv N(O, a~) and Ci rv N(O, an (remember that 'l]pi is conditional on 
Bp and in this case it is also conditional on Ci). 

6.3.3 Graphical representation 

Figure 6.1 gives a graphical representation of the model in Equation 6.5. 
Note that the random component and the link function are omitted. The 
item parameter ßi is explained in terms of the item predictors Xik and 
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their effects ßk, and the unexplained part is Ei. The person parameter ()p 

can be seen as the random effect of the constant person predictor. Note 
that elsewhere ()p is sometimes seen as the random effect of the constant 
item predictor, but our formulation is equivalent and leaves the constant 
item predictor for the random item effect. 

FIGURE 6.1. Graphical representation of a model with itern properties, randorn 
itern effects, and randorn person effects. 

6.4 Bayesian estimation 

6.4.1 Estimating crossed random-effects models in general 

The estimation of crossed random-effects models is complicated when using 
a maximum likelihood approach because there is an integral for each pair 
of a person and an item (see Chapter 12). The alternatives are an approx­
imative method based on a linearization of the integrand, as in the SAS 
macro GLIMMIX, and a Bayesian method. For an application of GLIM­
MIX to a crossed random-effects model see Van den Noortgate, De Boeck, 
and Meulders (2003). For crossed random-effects models with item predic­
tors, Janssen et al. (2003) showed that Bayesian estimation and GLIMMIX 
gave a comparable goodness of recovery. In the following, we will briefly 
summarize the main features of Bayesian data analysis. 
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6.4.2 A short review 01 Bayesian data analysis 

Posterior-based inferences 

An essential feature of Bayesian data analysis is that all unknowns are 
treated as random variables. Consequently, when fitting a model to a data 
set, the model includes both a likelihood function, g(yJB), and a prior dis­
tribution for the parameters, g( B), where g(.) is a general notation for a 
density function. Bayesian inference is based on the posterior distribution, 
which is a prob ability function on the parameters of the model, g(BJy). 
Using Bayes' theorem, one can derive that the posterior distribution is 
proportional to the product of the likelihood and the prior distribution: 

g(BJy) cx: g(yJB)g(B). 

The influence of the prior distributions on the posterior can be kept small 
by using uninformative priors. The posterior distribution of a parameter is 
usually summarized by its mean, which is called the expected aposteriori 
estimator (EAP). Its standard deviation is used to describe the posterior 
uncertainty for the parameter at hand. 

Markov chain Monte Carlo methods 

For a long time, the applicability of Bayesian data analysis depended heav­
ily on the mathematical tractability of the posterior. This changed with 
the advent of Markov chain Monte Carlo (MCMC) techniques (Gelman et 
al. , 1995; Gilks, Richardson & Spiegelhalter, 1996; Tanner, 1996). MCMC 
refers to methods of simulating random sampIes from any theoretical mul­
tivariate distribution. Features of the theoretical distribution can then be 
estimated by corresponding features of the random sampIes. The sampling 
scheme is based on a Markov chain, which after a burn-in period converges 
to the theoretical distribution. When using MCMC to describe the pos­
terior distribution of a model, successive sampIes of parameter values are 
drawn from that distribution. For each model parameter, the me an and 
standard deviation of these sam pIes are used as summary measures. There 
exist various vers ions of MCMC methods, such as the Gibbs sampling or 
the Metropolis-Hastings sampling techniques. Patz and Junker (1999) de­
scribed the implementation of several of these for item response models. 
In the present chapter, we will only describe data augmented Gibbs sam­
pling (see Section 6.4.3). This method was originally developed for item 
response models with the pro bit link function, but results can be obtained 
on an approximate logit scale using the scale transformation discussed in 
Section 1. 7.3. 

Model checking 

According to Gelman et al. (1995), the usual Bayesian prior-to-posterior 
analysis cannot proceed without model checking. Given the two compo­
nents of the posterior distribution, one can check the sensitivity of the 
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model inferences to the choice of a particular prior distribution and one 
can check the plausibility of the model (likelihood) for the data. For the 
latter aspect of model checking, Meng (1994) and Gelman, Meng, and Stern 
(1996) developed the technique of posterior predictive checks (PPC). The 
basic idea of a PPC is that "if the model fits, then replicated data gener­
ated under the model should look similar to observed data" (Gelman et al., 
1995, p. 165). Model fit is assessed by defining a test quantity for an aspect 
of the data that is relevant to the validity of the model. Variation of the 
test quantity for the replicated data denotes the random fluctuation of the 
test quantity under the model's own assumptions. If the model does not fit 
the data, and when the test quantity is defined in the appropriate direc­
tion, the test quantity should be systematically higher when calculated on 
the observed data, than when calculated on the replicated data generated 
under the model. A PPC p-value for assessing the model fit is defined as 

PPC p-value = 1 - Pr (Tabs > Trep I Y), 

where Tabs denotes a test quantity T(.) that is calculated on the data, and 
Trep denotes the same test quantity calculated on the replicated data. T(.) 
is either a statistic of the data (i.e., a function of the data only), denoted 
by T(Y) and T(Y rep), or it is also a function of the parameters, and it is 
then called a 'discrepancy measure,' denoted by T(Y, 8) and T(Y rep, 8), 
where 8 is the parameter space. Small values of the PPC p-value indicate 
bad fit. Note that when using a PPC, researchers can develop their own 
test quantities, depending on the aspects of the model one is interested in. 
In contrast with classical test statistics, Bayesian test quantities (1) are 
not restricted to test quantities with theoretically derived sampling distri­
butions, and (2) allow for dependence of the test quantities on parameter 
estimates (which are not a function of the data in a Bayesian analysis). 
Using sampIes from the posterior, one can also calculate descriptive mea­
sures of fit. For the model with item predictors, one could for example use 
the proportion of variance accounted for by the linear combination of item 
predictors. 

6.4.3 Data augmented Gibbs sampling for models with item 
(group) predictors 

Posterior distribution 

Suppose the following crossed random-effects item response model is esti­
mated: 
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(6.6) 

k=O 

As before, ß~ denotes the structural, fixed part of item difficulty, which is 
determined by the item predictor matrix X. Depending on X, Equation 
6.6 can refer to a model with item properties, to a model with item group 
predictors, or to the null model where all items come from one population. 

In our applications, an uninformative, fiat prior was chosen for each fixed 
parameter ßk. As is convenient for variance parameters, a scaled inverse-x2 

distribution was chosen with scale parameter S2 and l/ degrees of freedom 
for both variance parameters a-~ and a-; (with l/ = 1). For the parameters 
Bp and ßi no prior distribution is needed, as the model already specifies a 
distribution for them. Given these prior distributions, the posterior distri­
bution of the model equals 

g(9,ß,a-;,a-~IY,X) oe 

g( allg( a;l x (Q N( 8p ; 0, all) (D N (ß,; ß;, a;) ) 

x (Q D Pr(Ypi = 11Bp, ßi)yPi (1 - Pr(Ypi = 11Bp, ßi))l-YPi) , 

where N(ßi; ß~, a-;) and N(Bp; 0, a-~) represent the normal density for ßi 
and for Bp , respectively. The posterior consists of three parts: (a) the prior 
distributions with densities g(a-~) and g(a-;), (b) the random-effects dis­
tribution for the persons and for the items, and (c) the likelihood of the 
data given the person and item parameters. Independence assumptions are 
made in all three parts: (a) independence oft he priors, (b) independence of 
the person and item parameters, and (c) independence of the observations 
across persons (i.e., experimental independence) and of the observations 
within persons given Bp (i.e., local independence). 

Data augmented Gibbs sampling 

For the estimation of the model based on a MCMC approach, we use the 
Gibbs sampIer with data augmentation. The Gibbs sampIer takes a modular 
approach to sampling from the posterior distribution. It creates a Markov 
chain by successively sampling from a set of full conditional distributions. 
The Gibbs sampIer is therefore also called alternating conditional sampling 
(Gelman et al., 1995). Each full conditional distribution describes the con­
ditional posterior distribution of a parameter (or parameter vector) given 
the previously sampled value of all the other parameters. 
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A crucial step in the Gibbs sampIer is the derivation of the conditional 
distributions. Albert (1992) showed that for normal-ogive item response 
models these conditional distributions can be derived analytically if the 
posterior distribution of the model is augmented with latent data (Tanner, 
1996). See Maris and Maris (2002) for the logistic model. The latent data 
were already introduced in Chapter 1 and consist of the continuous, covert 
variable Vpi for each corresponding pair of person p and item i. As was 
explained, it is assumed that 

v, . rv N( . 1) with { Vpi ::; 0 when Ypi = 0, 
p' 'T/p', Vpi > 0 when Ypi = 1. (6.7) 

Hence, the probability that Vpi > 0 equals the probability of aI-response. 
By induding the latent data, the posterior distribution changes into a joint 
posterior density of all model parameters (latent data and the other para­
meters): 

g(V,O,ß,O";,O"~IY,X) cx 

g(O"~)g(O";) x (Q N(Bp;O'O"~)) (g N(ßi;ß~,O";)) x 

(Q g N(Vpi; Bp - ßi, I)(I(Vpi > O)I(Ypi = 1)+I(Vpi ::; O)I(Ypi =0))) , 

where 1(.) is the indicator function. Intuitively speaking, one could say 
that by introducing the latent data variables Vpi , the observed data are 
projected on the same continuous scale as the parameters of the model. 
Indeed, one could rewrite Equation 6.7 as 

with cpi rv N(O, 1). Consequently, a sampled value of Vpi implies that for 
the pair of person p and item i, Bp can be approximated by Vpi + ßi, and, 
vice versa, ßi can be approximated by Bp - Vpi . These latent residuals for Bp 
and ßi, respectively, playamajor role in the full conditional distributions 
for Bp and ßi. 

Full conditional distributions 

Table 6.1 presents the full conditional distributions for all the parameters 
in the augmented posterior, for the case of the normal-ogive model. The 
constant ein Table 6.1 equals 1 if the normal-ogive model is used and 1.7 
if one wants to approximate a logistic model (see Section 1.7.3). This is the 
inverse of the operation that is used to approximate the normal-ogive model 
from the logistic model. When calculating the full conditional posterior 
distribution for a particular parameter from the augmented posterior, a lot 
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of parameters cancel out due to the independence assumptions made. The 
mathematical tractability of the conditional distributions is not only due 
to the data augmentation step, but also to the distributional form of the 
priors and of the random-effects model. As an example, the derivations of 
the fuH conditional distribution for f)p and (T~ are presented in Section 6.10. 

TABLE 6.1. Full conditional distributions of the data augmented Gibbs sampler 
for an item response model with random item effects. 

V, .If) ß y;. '" {N (f)p - ßi, c2 ) truncated at 0 to the right if Ypi = 0 
p' p, "p' N (f)p - ßi, c2 ) truncated at 0 to the left if Ypi = 1 

where V p = (Vpl , ... , Vpi ,"" "Vz,I)' 
Vi = (VIi,"" Vpi ,"" VPi)' 
ß = (ßI, ... , ßi, ... , ß d 

When taking a closer look at Table 6.1, one can see that the fuH condi­
tional distribution for Vpi is an equivalent expression to Equation 6.7. For 
f)p and ßi, the mean of the conditional posterior distribution is determined 
by the sum of their latent residuals and by the mean of their random­
effects distribution (0 for f)p, ß~ for ßi)' For ßi, one can see that the larger 
the variance is of the random effect, the smaHer the impact of the mean 
random effect is on the mean of the conditional posterior distribution and 
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the smaller the gain is in the precision of the obtained estimate by the 
inclusion of the item predictor matrix X. For the item predictor weights 
ßk, a multivariate normal distribution is defined. The mean and variance 
of this distribution are obtained from a standard linear regression of the 
item difficulties ßi on the item predictor matrix X. For example, when the 
items are modeled to come just from one distribution (i.e., ßi r-v N(J.Lß' (J~)), 
the full condition distribution is 

Finally, the variance parameters (J~ and (J~ are determined both by the 
sum of squared differences of the parameters at hand and by the scale 
parameter 8 2 of the prior. It can be seen that the information in the prior 
with 1/ degrees of freedom is equivalent with the information of 1/ additional 
observations, for (J~ and (J~, respectively. 

All full conditional posterior distributions are standard statistical distri­
butions: the (truncated) normal, the multivariate normal, and the scaled 
inverse-x2 . One can sample directly from these distributions using standard 
routines. Hence, given Table 6.1, estimating the item response model with 
item predictors using the data augmented Gibbs sampler implies succes­
sively sampling from these distributions. At each iteration, the previously 
sampled parameter values are taken as constant values. After the sampling 
process is finished, summary measures are calculated for each sample of pa­
rameter values. This is not only done for the fixed effects of the model (ßk, 
(J~ and (J~), but also for the random effects Bp and ßi. Hence, in contrast 
with a likelihood-based approach, no empirical Bayes procedure is needed 
to estimate individual random effects. 

We will now report on two applications. In Section 6.5 a model with 
item properties as predictors is used for the verbal aggression data, and a 
Bayesian approach is followed. In Section 6.6 a model with item groups as 
predictors is used for the mathematics and science data, using GLIMMIX 
for the estimation. 

6.5 Application of the crossed-random effects 
model with item predictors to the verbal 
aggression data 

6.5.1 Method of model estimation and model checking 

Method of model estimation 

The model with item predictors was estimated for the verbal aggression 
data using the data augmented Gibbs sampler. Details about the estimation 



202 Rianne Janssen, Jan Schepers, Deborah Peres 

are given in Section 6.8.1. The same item design and the same co ding 
scheme for the item predictors (see Figure 2.7) were used as in Chapter 
2 for the LLTM. The results were compared with those obtained for the 
LLTM, when estimated with a Bayesian method (Janssen et al. , 2003) or 
with the NLMIXED procedure from SAS. 

Method 01 model checking 

Three important aspects of the model were checked. First, the general 
goodness of fit of the model was evaluated. Replicated data were obtained 
by comparing the probability of a correct response for each pair of ()p and 
ßi with a random draw from a uniform distribution on the unit interval. 
The X2- statistic was used as a discrepancy measure (see also Janssen et al., 
2000). For each draw from the posterior, the sorted vector () was partitioned 
in five adjacent ability groups. The X2- statistic compared the observed and 
expected number of 1- and O-responses for each item in the different ability 
groups. It was calculated for each Gibbs iteration for both the observed 
and for the replicated data. The resulting values of the x2-statistics were 
summed over items for the general test. The degree of deviance of the model 
for the data was expressed by a Bayesian p-value, which was estimated as 1 
minus the proportion of iterations for which the discrepancy measure was 
larger for the data than for the replicated data. SmaH Bayesian p-values 
indicate bad fit. Second, the goodness of fit was also evaluated in the same 
way for each item separately. 

Third, the goodness of fit of the item explanatory part of the model was 
assessed. The correlation over items between ßi and ß: was calculated for 
each draw from the posterior. The squared correlation was used as a mea­
sure of the proportion of explained variance in the ßi by the item predictors 
in X. Also, the residual ßi - ß: was calculated for each item separately for 
each draw from the posterior. The residual values were summarized using 
a 90% and 95% central posterior interval. Items for which the interval did 
not contain the value zero were not in line with the item explanatory part 
of the model. 

6.5.2 Results 

Model checking 

The model for the data fitted weH using the general test. For the total data 
set, the X2- based PPC led to a Bayesian p-value of .24. For the individual 
items, the Bayesian p-value varied between .16 and .62. As an illustration, 
Figure 6.2 gives a plot of the posterior mean of the observed proportion of 
correct answers against the posterior mean of ()p in the five ability groups 
for the worst fitting item (Store - Want - Curse, p = .16) and for the best 
fitting item (Bus - Do - Curse, p = .48). Both plots are compared with the 
theoretical item response curve obtained using the value of the posterior 
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mean of ßi as item difficulty. Although not deviant at the 5%-level, the 
worst fitting item had a lower slope than the other items in the data set. 
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FIGURE 6.2. Goodness offit of (a) the worst fitting item, and (b) the best fitting 
item on the x2-based PPC. 

Also the model for the item parameters fitted weIl. The posterior mean of 
the squared correlation between ßi and ß~ was .89 with a posterior standard 
deviation of .02. This is comparable to the correlation of .94 mentioned 
in Section 2.5.3, which was calculated between the item parameter esti­
mates from the Rasch model and the reconstructed item parameters from 
the LLTM. A correlation of .94 corresponds to a proportion of explained 
variance of .89. Hence, the item design variables predicted item difficulty 
very weIl. Nevertheless, for some items the main effects of Behavior Mode, 
Behavior Type, and Situation Type were not sufficient to explain item 
difficulty. Four items were deviant according to the 95% central posterior 
interval and eight items according to the 90% central posterior interval. 
As an illustration, the posterior mean of ßi is plotted against the posterior 
mean of ß~ for the three types of behavior (eurse, Scold, Shout) in two sit­
uations. Figure 6.3a displays the results for Want when missing the train. 
All three items showed good fit, as evidenced by the almost parallel and 
flat lines between ßi and ß~. Figure 6.3b displays the results for Do when 
being disconnected while calling. In this situation, the threshold for cursing 
and for scolding is higher than predicted by the model. Hence, in compari­
Son with model predictions, cursing and scolding are less likely when being 
disconnected. Maybe this reflects the fact that this situation is the only 
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One where the actor is most likely alone. 
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. FIGURE 6.3. The posterior mean of ßi and of ßf for eurse (0), Scold (()) and 
Shout (6) for (a) Want when missing the train, and (b) Do when being discon­
nected from a phone call. 

Parameter estimates 

Table 6.2 gives the estimates of the item predictor weights and of the vari­
anee parameters. The estimates for the LLTM were very similar for the 
NLMIXED and the Bayesian analysis. However, in eomparison with the 
model with random item effects, the item parameter estimates of the LLTM 
were smaller in absolute value and their standard error was mueh sm aller. 
Also the estimated person varianee in the LLTM was sm aller. The dif­
ferenees between the LLTM and the model with random item effeets ean 
be explained by how the model is sealed. As explained in Chapter 1, the 
larger the unexplained varianee is, the smaller the value of the parame­
ter estimates. Adding random effeets to a model to deseribe the data in a 
better way, results in larger estimates of the other effeets. In the present 
example, the differenees between the estimates of the two models are small. 
This is beeause the item predietors explained item diffieulty very weIl, so 
that there is not so mueh error varianee. The differenee in standard errors 
of the two approaehes is mueh larger than the differenee in parameter es­
timates, so that the differenee in standard errors ean be explained only to 
a small extent by a sealing effeet. For an interpretation of the obtained 
weight estimates in Table 6.2, we refer to Chapter 2. 



6. Models with item and item group predictors 205 

TABLE 6.2. Estimates of the item predictor weights and of the variance parame­
ters (with their standard errors) for the LLTM and the model with random item 
effects (verbal aggression data). 

ß~ = ßi ßi = ß~ + Ci 

Item predictor NLMIXED Bayesian Bayesian 

Fixed effects 
Do vs Want .67 (.06) .68 (.06) .71 (.17) 
Other-to-blame -1.03 (.06) -1.03 (.06) -1.05 (.17) 
Blaming* -1.36 (.05) -1.35 (.05) -1.39 (.14) 
Expressing** -.70 (.05) -.70 (.05) -.70 (.14) 
Intercept .31 (.09) .31 (.09) .33 (.17) 

Random effects 
a 2 

c .16 (.06) 
a 2 

() 1.86 (.20) 1.80 (.18) 1.89 (.19) 

*Curse & Scold vs Shout 
**Curse & Shout vs Scold 

6.6 Application of the crossed random-effects 
model with item groups to the mathematics 
and science data 

6.6.1 Analyses 

As an illustration of a model with item groups, the 56 multiple-choice items 
of the mathematics and science data were analyzed. The data are described 
in Seetion 5.6. Remember that the items were partitioned in two domains: 
mathematics and science. Therefore, the item design matrix consisted of 
two predictors: the constant predictor and a dummy variable to indicate the 
mathematics items. This is equivalent with using no constant predictor and 
two dummy variables: one for the mathematics items and one for the science 
items. Two models were estimated using the item predictor matrix X: the 
LLTM, and the model with crossed random item effects. Both models were 
estimated with GLIMMIX using a logit link (see Section 6.8.2). 

6.6.2 Results 

The estimation results are displayed in Table 6.3. The items turned out 
to be relatively easy for the respondents. For the model with random item 
effects, the average difficulty was -.72 for the science items and - .42 ( = 
-.72 + .30) for the mathematics items. On the average, the mean student 
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(with ()p = 0) had an expected success prob ability of .67 on the science 
items and .60 for the mathematics items. The estimated effect of item 
group predictor (mathematics) was not significant (p > .10) so that one 
may not conclude that the math items were more difficult than the science 
items. The within-group item variance (J"; was almost as large as the person 
variance (J"~. The standard error of the latter variance was much smaller, as 
it is based on a much larger number of observations (1500 students versus 
56 items). 

The results of the LLTM differed in three ways from those of the model 
with random item effects. First, the fixed-effect estimates in the LLTM were 
slightly smaller in absolute value. Second, the estimated standard errors of 
the estimates were much smaller in the LLTM. As a consequence, on the 
basis of the LLTM one would conclude that the mathematics items differ 
significantly in difficulty from the science items (p < .001), whereas the 
difference is not significant in the model with random item effects. Finally, 
the estimated person variance was smaller in the LLTM. 

TABLE 6.3. GLIMMIX estimates of the fixed effects and of the variance para­
meters (with their standard errors) for the LLTM and the model with random 
item effects (mathematics and science data). 

Effect ß: = ß ßi = ß: + Ci 

Fixed Effects 
Intercept -.66 (.02) -.72 (.16) 
Mathematics .30 (.01) .30 (.22) 

Random Effects 
(J"2 

E: .74 (.14) 
(J"2 e .65 (.03) .87 (.04) 

The observed differences between the LLTM and the model with random 
item effects parallel those of the first application, the much larger standard 
errors included. However, in this second application, this has serious conse­
quences for the inference regarding the effect of the item groups (significant 
difference between item groups or not). The two models represent different 
views on the data. One either takes the inter-item variance into account 
for the statistical test (in the model with random item effects) or not (in 
the LLTM). 
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6.7 Concluding remarks 

In item response modeling, items are traditionally modeled as fixed effects. 
It was shown in the present chapter that models with random item effects 
offer a viable alternative when using item properties or item groups as pre­
dictors. These models can be applied in the case where one is not interested 
in the particular effects of the individual items (models with a single item 
group) , when one has a multilevel model on the item side (models with 
multiple item groups), or when one is interested in the effects of item prop­
erties (models with item properties as predictors). All three models can be 
defined on the basis of random item effects. Using a model with random 
item effects seems a useful option given that it is less restrictive than the 
LLTM. 

The application of item response models with random item effects is 
somewhat hampered by the difficulty of estimating a GLMM with crossed 
random effects. However, it was shown in the present chapter that a Baye­
sian approach or GLIMMIX can be used. The Bayesian approach has the 
advantage that estimates of the individual item effects ßi can also be ob­
tained, giving extra possibilities for model checking. As was indicated in 
Chapter 2, models with item properties and item group properties as pre­
dictors can be combined with models with person properties and person 
groups as predictors leading to doubly explanatory models with crossed ran­
dom effects. In such models, the item side and the person side are treated in 
the same way, using random effects to describe the unexplained variation. 

6.8 Software 

6.8.1 Model with item predietors (verbal aggression data) 

The model with item predictors was estimated using the data augmented 
Gibbs sampier. For the analysis of the verbal aggression data, a scaled 
inverse-x2 distribution with 82 = .0001 and v = 1 was used to give an un­
informative prior. Five Markov chains of length 4000 were used. The first 
1000 iterations were used as burn-in. The maximum value of the conver­
gence measure R (Gelman, 1995) equaled (1.0034)2, indicating convergence 
of the Markov chains. The Gibbs sampling procedure was programmed in 
Matlab. The code is given on the website indicated in the Preface. 

6.8.2 Model with item group predietors (mathematies and 
seienee data) 

The macro GLIMMIX from SAS was used for all analyses of the math­
ematics and science data. General information on this macro is given in 
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Chapters 5 and 12. In all analyses, a random intercept was included on 
the person side. The origin of the scale was the mean of the random-effects 
distribution. 

Code fOT crossed-effects model 

%glimmix(data=MASC, 
procopt = covtest, stmts=%str( 
class pupil item; 
model score = constant 
random intercept / sub 
random intercept / sub 
) , 
link = logit 
error = binomial 
) ; 

run; 

Comments 

mathematics/solution noint; 
pupil; 

= item; 

1. Two item predictors were used: a constant predictor (constant) and a 
dummy variable to indicate mathematics items (mathematics). In order to 
obtain estimates of item difficulty, the item predictors (dummy variables 
and constant) were first multiplied with -1. 
2. In order to estimate the LLTM, the statement random intercept/ sub= 
item; is omitted. 

6.9 Exercises 

1. Derive the full conditional posterior distributions for ßi and (J";. 

2. In Section 2.6 of Chapter 2 a doubly explanatory model was proposed, 
which was called the latent regression LLTM. Reformulate that model by 
including a random error component on the item side. 

3. Explain why (J"; is so much smaller than (J"~ in Table 6.2 compared to 
Table 6.3. Is a near equality of (J"; and (J"~ (such as in Table 6.3) a good 
feature of a test? 

4. Compare the results of the Bayesian analysis of the verbal aggression 
data as reported in Table 6.2 with the results you obtain with GLIMMIX. 
Can you calculate the percentage of explained variance in the ßi from the 
GLIMMIX output? 

5. For the mathematics and science data, estimate a crossed random-effects 
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model using GLIMMIX (a) where all items are assumed to come from one 
distribution, and (b) where the mathematics and science items come from 
a different distribution, each with their own mean and variance. Compare 
the obtained results with an estimate of the item effects from the output 
of a Rasch model, also estimated with GLIMMIX. 

6.10 Appendix: Derivation of the full conditional 
distributions for ()p and (J~ 

In the following, the derivation of the fuH conditional posterior distribution 
is given for ()p and (J~ given the model and the choice of the priors discussed 
in Section 6.4.3. An important feature of the derivation is that constant 
values can be freely dropped or added as the fuH conditional distribution 
is calculated only up to a proportionality constant. The derivation itself 
consists in successively expanding the exponents, coHecting terms and then 
completing the wanted distributional form (e.g., the so-called 'completing 
the square' in ()p). 

I 

cx: N(()p; 0, (J~) rr N(Vpi ; ()p - ßi, c2 ) 

i=l 
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p 

oe 9 (u~) exp rr ((}p;fLlJ,U~) 
p=l 

'" (·1) -( ,+') exp ( - ;:1) 11 ( C~) I exp h!l (Op - Me)') ) 

oe (u~)(-~+l)exp (- S22) (u~rf exp (-212 'f..((}p - fLlJ)2) 
2uIJ ulJ p=l 
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Chapter 7 

Person-by-item predictors 

Michel Meulders 
Yiyu Xie 

7.1 Introduction 

In this chapter we consider the inclusion of person-by-item predictors into 
the model. Unlike person predictors or item predictors, person-by-item pre­
dictors vary both within and between persons. The inclusion of person-by­
item predictors besides person predictors or item predictors is relevant for 
modeling various phenomena such as differential item functioning (DIF) 
and local item dependencies (LID) (see Zwinderman, 1997). To describe 
models with person-by-item predictors we will distinguish between static 
and dynamic interaction models. We concentrate here on models for DIF 
and LID, but the interaction concept is of course more general. 

Static interaction models include person-by-item predictors that are not 
directly based on the responses that are modeled, but that are indepen­
dently supplied, or that are constructed on the basis of person and item 
predictors. The inclusion of a person-by-item predictor which is derived as 
the product of an item indicator and a person predictor indicating group 
membership can be used to investigate DIF. Studies on DIF - also called 
item bias - are generally concerned with the quest ion whether an item 
is 'fair' for members of some focal group compared to members of a ref­
erence group. An item is said to be unbiased if it is equally difficult for 
persons of the focal and the reference group who are matched with respect 
to the underlying dimension that the test purportedly measures. Some au­
thors reserve the term 'bias' for the case in which the matching criterion 
is judged to be construct-valid in the sense that it is matching persons 
on the basis of the underlying dimension the test is designed to measure 
without contamination from other unintended-to-be-measured dimensions 
(Shealy & Stout, 1993a,b). However, in this chapter we will use the terms 
DIF and item bias as synonyms to indicate the statistical phenomenon of 
item-by-group interaction. 

Currently there are many procedures available for detecting DIF (for an 
overview see: Millsap & Everson, 1993). Widely-used classical approaches 
are the Mantel-Haenszel procedure as modified by Holland and Thayer 
(1988) and the standardized p-difference index of Dorans and Kulick (1986). 
In item response modeling several procedures have been developed to de-
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tect item bias, for instance, using loglinear item response models (Mellen­
bergh, 1982; Kelderman, 1989), logistic regression models (Swaminathan & 
Rogers, 1990), area measures (Raju, 1988), Wald statistics (Lord, 1980) and 
likelihood-ratio tests (Thissen, Steinberg & Wainer, 1988). Besides differ­
ential item functioning it may be of interest to investigate differential test 
functioning, that is, how DIF in individual items affects the distribution 
of the test scores in different groups. Shealy and Stout (1993a,b) present 
a nonparametric multidimensional method, called SIBTEST, that can be 
used to assess DIF. Wainer, Sireci, and Thissen (1991) present a parametric 
item response modeling approach to model DIF in test let scores. 

In the section on static interaction models we will mainly focus on item 
response modeling for DIF detection that can be implemented using the 
procedure NLMIXED from SAS. Furthermore, we will extend the concept 
of DIF in two ways: (1) we will indicate how DIF in individual items can 
sometimes be modeled in a more parsimonious way as differential facet 
functioning (DFF), and (2) we will show how to model individual differ­
ences in DIF or DFF by making item-by-group or facet-by-group interaction 
parameters random over persons. 

In dynamic interaction models, item responses are modeled on the ba­
sis of other item responses. Fahrmeir and Tutz (2001) label these models 
conditional models because they are built by specifying the prob ability of 
a response given predictors and other responses. For instance, when the 
components of the response vector may be considered as ordered (e.g., lon­
gitudinal data), one can use transition models (for an overview, see Diggle, 
Heagerty, Liang & Zeger, 2002) in order to model responses on the basis 
of previous responses. In the context of cognitive and educational testing, 
dynamic models are typically used to assess learning during test taking 
(Klauer & Sydow, 2001; Verguts & De Boeck, 2000; Verhelst & Glas, 1993, 
1995). Another application is to model responses to one item on the basis 
of responses to another item that shares (up to a certain point) the same 
stimulus content. For instance, in the verbal aggression data, one could 
dynamically model the responses to a want-item on the basis of responses 
to the corresponding do-item. 

The inclusion of dynamic person-by-item predictors can also be regarded 
as one particular approach to model local item dependencies (LID) or 
correlations between responses beyond those from the random intercept 
(Verhelst & Glas, 1993). Hunt and Jorgensen (1999) discuss this type of 
LID modeling in the context of latent-class clustering. Other approaches 
consider responses to sets of possibly interdependent items as the basic 
unit of the analysis. Such sets have been labeled testlets (Wainer & Kiely, 
1987) or item bundles (Rosenbaum, 1988; Wilson & Adams, 1995). Dif­
ferent ways of handling item dependencies between items within a test let 
are available, as explained in Chapter 10. The way to model LID we will 
follow here is to parametrize the joint distribution of the item responses in 
the testlet in terms of single-item effects and second-order or higher-order 
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interactions. Examples of this approach are given by Kelderman (1984), 
Jannarone (1986), and Hoskens and De Boeck (1995, 1997). This approach 
can easily be formulated in a loglinear-model framework. 

FIGURE 7.1. Graphical representation of an extended Rasch model that includes 
person-by-item predictors. 

For both types of models (static and dynamic) with person-by-item pre­
dictors, Figure 7.1 shows a graphical representation of a Rasch model that 
is extended with such predictors. The random component and the logit 
link are omitted. This model explains the logit of the success probability 
of person p for item i (i.e., 'T]pi) on the basis of one (constant) person pre­
dictor Zo with a weight ()p that is random over persons, I item indicators, 
XiI to X iK (with K = 1), with corresponding fixed weights, ßl to ßI, and 
H person-by-item predictors W pil to WpiH, with fixed weights, 01 to OH. 

The W predictors can be properties with values that depend on the person 
and the item or they can be responses to another item. In the foHowing 
two sections we furt her describe how static and dynamic models can be 
specified by including person-by-item predictors, and models of each type 
are applied to the verbal aggression data. 

7.2 Static interaction models 

In this section we will mainly focus on person-by-item predictors that 
are computed as the product of a person predictor (representing a per­
son group) and an item indicator (representing an item indicator or item 
property). This type of predictor can be used to investigate differential item 
junctioning (DIF) as weH as differential jacet junctioning (DFF; Engelhard, 
1992), which concerns differential effects of item properties. 
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7.2.1 Differential item junctioning 

Differential item functioning (for an overview, see Holland & Wainer, 1993) 
refers to differences among groups in the functioning of items where the 
groups are matched on the underlying dimension measured by the test 
(Dorans & Holland, 1993; Scheuneman, 1979). More specifically, we have to 
make a distinction between differential impact, which refers to a difference 
in performance between groups, and DlF, which refers to a difference in 
performance between groups after groups have been matched with respect 
to the dimension that the test purportedly measures. Defining the latent 
variable B as the underlying dimension for which the observed item Y is an 
indicator, and Z as the person predictor which indicates group membership, 
the absence of DIF can be formally defined in a very general way (see 
Millsap & Everson, 1993): 

Pr(Y = ylB, Z = z) = Pr(Y = yIB), (7.1) 

for all values of Band Z (and omitting subscripts). Note that B in Equation 
7.1 can be discrete or continuous, and univariate or multivariate. In the 
special case that B is continuous and univariate, Equation 7.1 reduces to 
Lord's (1980) definition of the absence of DIF, which is commonly used 
in item response modeling. Note that the definition of DIF based on a 
violation of Equation 7.1 implies the existence of a suitable measurement 
model that holds across groups. 

In order to describe the formal modeling of DIF we consider the analysis 
of a test of l items which has been administered to two groups defined by a 
variable Z (= 0, 1). The groups are commonly referred to as the reference 
group (Z = 0) and the focal group (Z = 1). It is assumed that the l items 
consist oftwo sets: the first set of la items (i = 1, ... ,Ja) can be considered 
an anchor set of unbiased items with item response functions that can be 
adequately described by the 2PL model (for a discussion of the 2PL model, 
see Chapter 8), whereas for the second set of l -la items (i = la +1, ... ,1), 
we wish to investigate whether DIF occurs. Table 7.1 displays the logit of 
the success prob ability for persons of each group on anchor items and on 
items that are suspected of DIF. 

As will be explained, the parametrization (aiBp - ßi) is used because 
it is convenient to describe different types of DIF and because it yields 
simple effect size measures of DIF (that do not involve other parameters 
than those where the DIF is concentrated). Note that the consequence of 
this parametrization is that ßi indicates the value aiBp where the success 
prob ability is .5 (when ßi = aiBp), and that the ratio ßi/ai indicates the 
value of Bp where the success prob ability is .5 (when ßdai = Bp). However, 
we will still use the term 'item location' for ßi, but now the location applies 
to the aiBp-scale. 

In Table 7.1, for each group (i.e., for each value z of Z) the random 
intercept is assumed to be normally distributed with group-specific mean 
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and variance. In order to identify the model it is necessary to fix the mean 
and the variance of one of the groups. In particular, we may assume that 
() rv N(0,1) for the reference group and that () rv N(f.1,a2 ) for the focal 
group. In case One uses the Rasch model (i.e., ai = 1 for all values of i up 

to I, and 8ia ) = 0 for all values of i, from Ia + 1 to 1) only the mean of one 
of the groups needs to be fixed (and nO other distribution parameters). 

As can be seen in Table 7.1 the logits of the success probabilities for 
anchor items are equivalent across groups because the item parameters 
for locations and slopes are constrained to be equivalent across groups. 
For items suspected of DIF, the logits for both groups may differ in two 
respects: the item locations and the slopes. In particular, the item location 
of the focal group is obtained by adding a parameter 8(ß) to the location 
parameter of the reference group and, in the same way, the slope of the 
focal group is obtained by adding a parameter 8(a) to the slope parameter 
of the reference group. 

TABLE 7.1. Logit of the success probability of persons of different groups on 
anchor items and items suspected of DIF. 

Group 

Reference 

Focal 

Z Anchor items 

o ai()p - ßi 

1 ai()p - ßi 

Item suspeeted of DIF 

ai()p - ßi 

[ai + 8ia )]()p - [ßi + 8iß)] 

The parameters 8(ß) and 8(00) are actually group-by-item interaetion ef­
feets. This can easily be seen by writing the logit of the success prob ability 
on items suspected of DIF (i = I a + 1, ... ,1) in the following way: 

with X ik being item indicators that equal 1 if i = k and 0 otherwise, and 
with Wpik being static preditors that equal the product of a binary group 
indicator Zp and an item indicator, so that Wpik = XikZp-

Mellenbergh (1982) distinguished between different types of DIF: when 
DIF involves the slope (8(00) i=- 0) and possibly also item location, it is 
labeled as non-uniform and when it involves only item location (8(ß) i=-
0,8(00) = 0), it is labeled as uniform. Finally, the absence of DIF implies 
equality of item locations and slopes across groups (8(00) = 8(ß) = 0). 

As the interaction parameters 8(ß) and 8(00) actually reflect the difference 
between group-specific item locations and slopes, respectively, DIF in indi­
vidual items can be detected with a Wald test for the null hypothesis that 
the interaction parameters equal zero. Furthermore, the null hypothesis of 



218 Michel Meulders, Yiyu Xie 

jointly having no DIF in a set of items ean be tested using a likelihood 
ratio (LR test) that eompares a restrieted model without interactions and 
an unrestricted model whieh includes interactions for the set of items un­
der investigation. We will not rely on LR tests to assess static interaction 
models but we will for the dynamie interaetion models. 

A useful effeet-size measure for DIF ean be obtained by subtracting the 
logits in the right-hand eolumn of Table 7.1. In partieular we ean derive 
that 

Henee, exp(8}Cl!)Op - 8}ß)) ean be interpreted as the odds ratio 
Pr(Ypi = 110, Z)/Pr(Ypi = 010, Z) for members ofthe seeond group (Z = 1) 
versus members of the first group (Z = 0) after eorrecting for the group 

effeet on Op. Figure 7.2 illustrates exp(8;Cl!)Op - 8;ß)) as a function of 0 for 

different types of DIF. When there is no DIF (8;Cl!) = 8}ß) = 0), the odds 
equa11 for all values of the random intereept. When the item shows uniform 
DIF in favor of the foeal group (8}Cl!) = 0, 8}ß) < 0), the odds are always a 
eonstant value higher than 1 and they are equal for all values of the ran­
dom intereept (i.e., exp( -8;ß))). Finally, when an item shows non-uniform 

DIF (8}Cl!) > 0), the odds exponentially rise as a function of O. Depending 
on the value of 0, non-uniform DIF ean be in favor of the referenee group 
(8( Cl!) 0 < 8(ß)) or in favor of the foeal group (8( Cl!) 0 > 8(ß)) ,p, ,p ,. 

7.2.2 Differential jacet junctioning 

As explained in the previous seetion, DIF ean formally be regarded as an 
interaction between an item indieator and a qualitative person predictor 
that indieates group membership. In an analogous way we ean define differ­
ential jacet junctioning (DFF) as the interaetion between an item property 
or item faeet and a group indicator. In other words, DFF implies that 
the effect of item properties on item diffieulty depends on the group. DFF 
ean be of interest for two reasons. First, modeling DFF may be a way to 
summarize and explain DIF of several items. For instanee, in the verbal 
aggression data it eould happen that all items regarding eursing displaya 
partieular type of DIF (e.g., positively signed uniform DIF). As a result, 
it would be meaningful to restrict the eorresponding DIF parameters to be 
equal, which is formally equivalent to including an interaction between the 
item faeet 'eursing' and the group indicator. DFF may be a parsimonious 
way to summarize and explain DIF. For example to model DIF in item 10-
eations on the basis of item faeets we model the interaetion parameters 8(ß) 
in Table 7.1 as a linear function of the K faeets. The logit of the sueeess 
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FIGURE 7.2. Odds ratio Pr(1 I (), z)jPr(O I (), z) for Z = 1 versus Z = 0 as a 
function of () in case of no D IF ( .... ), uniform D IF (- - - -), and non-uniform D IF 
(~) assuming J(a) = -J(ß) = .5. 

probability on items that are suspected of DIF then becomes 

In the same way, one may model DIF in the slopes by specifying the para­
meters 8(<» to be a linear function of item properties. 

Second, modeling DFF may be a way to investigate the effects of a facet: 
its main effect and interaction effect. More specifically, in the example in 
Table 7.1 we may model item locations for both groups by specifying the 
following model for the logit of the success probability: 

In a similar way, slopes in both groups can be modeled on the basis of item 
properties. 
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7.2.3 Random-weights DIF /DFF 

A natural extension of models that include DIF- or DFF-interaction pa­
rameters is to make some of these inter action parameters random over 
persons. The resulting models are denoted as random-weights differential 
item functioning (RW-DIF) models and random-weights differential facet 
functioning (RW-DFF) models. In this section, we will discuss so me topics 
that are important for modeling RW-DIF but that also hold for modeling 
RW-DFF. First, note that each random DIF effect effectively adds an extra 
person dimension to the model. Therefore, in practice, one can often only 
consider a limited number of random interaction parameters (i.e., 2 or 3) 
as models including several random effects are highly multidimensional and 
therefore hard to estimate (within a maximum likelihood framework). 

Second, an important issue in modeling RW-DIF is that the heterogeneity 
that can be captured by a certain random DIF parameter depends on 
whether one uses dummy coding or contrast co ding for the group variable 
z. In order to illustrate this we will describe different types of RW-DIF 
models for a set of I items that includes I - 1 anchor items which fit 
the Rasch model and one item i that is to be checked for uniform DIF. 
Modeling the heterogeneity in DIF in more complex situations (e.g., non­
uniform DIF in several items) is a straightforward extension. However, one 
should realize that the information included in one item is a poor basis for 
the estimation of a random effect. This is less of a problem when the same 
effect (i.e., a facet effect) relates to more than one item. 

For the above described situation, the logit of the success prob ability for 
person p on item i equals 

(7.2) 

with Xik an item indicator variable that equals 1 if k = i and 0 otherwise. 
For each group (i.e., each value z of Z) one may assurne a bivariate normal 
distribution for the random effects Bp and ,p with a group-specific vector 
of means and a group-specific variance-covariance matrix (allowing for het­
eroscedasticity), that is, (B" I z) rv N(J-Lz,'J.:. z ) with J-Lz = (poz,P,J and 
'J.:. z = (u~z' uO,z' u~J. Note that, to save space, we do not write the entire 
matrix 'J.:. but only list its lower diagonal elements in subsequent rows as a 
vector. It is necessary to fix J-Lz for one of the groups in order to identify 
the model. It is most natural to do this for the reference group, so that 
J-Lref = (0,0). When the 2PL is used, it is also necessary to fix the variance 
of Bp in one of the groups, so that 'J.:.ref = (1, uO,re!' u~ref). Finally, as can 
be seen from the logits in Table 7.2 a model that uses dummy coding for 
the group variable only allows one to model individual differences in DIF 
among the persons of the focal group. As a result, when using a dummy 
co ding scheme one should specify 'J.:.ref = (u~ ,0,0) when using the Rasch 

Ure! 

model and 'J.:.ref = (1,0,0) when using the 2PL as it is not meaningful to 
estimate the variance of the ,-dimension for the reference group. On the 
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other hand, when using contrast coding for Z, the ,-dimension can be used 
to model individual differences in DIF among members of both groupS.l 

TABLE 7.2. Logit of the success probability for RW-DIF models using dummy 
coding or contrast coding for the group indicator Z. 

Coding scheme Group Z Anchor items Item suspected of DIF 

Dummy co ding reference 0 Bp - ßi Bp - ßi 
focal 1 Bp - ßi Bp - ßi -'p 

Contrast co ding reference -1 Bp - ßi Bp - ßi + ,p 
focal 1 Bp - ßi Bp - ßi -,p 

7.3 Application of static interaction models 

In order to illustrate static interaction models, the verbal aggression data 
are analyzed in three steps. In a first step, we investigate DIF for Gender. 
In a second step, we aim at a more parsimonious model by constraining 
similar DIF effects that occur systematically in certain situation-behavior 
combinations to be equal. This actually leads to a DFF model. Finally, 
in a third step, we make the DFF parameter random over persons to see 
whether there is evidence for individual differences on the DFF dimension 
within groups (i.e., among men and among women). All the models are 
estimated with the NLMIXED procedure of SAS. The options that are 
used are described in Section 7.7. 

Differential item junctioning 

A general problem with DIF detection is that, under many approaches 
(e.g., SIBTEST; Shealy & Stout, 1993a,b), one needs a valid subset or an 
anchor set of unbiased items in order to link the scales of the two groups. 
When such an apriori set of unbiased items is not available (as is the case 
for the verbal aggression data) , one can follow an exploratory approach 
to detect DIF. In particular, we can distinguish between a forward and 
a backward approach. In a forward approach, DIF is first estimated for 
single items and afterwards all significant DIFs are included in one model. 

1 When dummy co ding is used for Zp, and both Zp and 1 - Zp are used as predictors 
to define the interaction, so that two interaction predictors are obtained (XikZp and 
Xik(l- Zp)), then the two 1ps can be defined, one for each group (with zero correlation 
between them). This is an alternative way to model heteroscedasticity. 
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In a backward approach, DIF is allowed simultaneously for all items and 
subsequently nonsignificant interactions are dropped from the model. Note 
that, in the first step of the backward approach, item-by-group interactions 
can only be estimated for I - 1 items because otherwise the model would 
not be identified. To solve this problem we did not include an item-by-group 
interaction for the last item. We can investigate the soundness of starting 
with this assumption by carrying out a second DIF detection procedure 
that starts with another item. In this paper we present the results of the 
backward approach. The results of the forward approach were similar. 

The following four models are compared: (1) a Rasch model without DIF 
for the entire data set, (2) a 2PL without DIF for the entire data set, (3) a 
Rasch model with group-specific location parameters for all items (except 
the last), (4) a 2PL with group-specific location and slope parameters for all 
items (except the last), each time using dummy coding for Gender (Z = 1 
for males and Z = 0 for females). 

TABLE 7.3. Number of parameters (Npar) and AIC and BIC values for eight 
models (verbal aggression data). 

Model N par AIC BIC 

1. Rasch model, no DIF 27 8124 8225 
2. 2PL, no DIF 50 8127 8315 
3. Rasch model, uniform DIF all items 50 8099 8287 
4. 2PL, non-uniform DIF all items 96 8134 8495 
5. Rasch model, uniform DIF do-items 39 8092 8238 
6. Rasch model, DFF actually scolding or cursing 28 8078 8183 
7. Rasch model, RW-DFF actually scolding or cursing 30 8055 8167 

dummy coding for Gender 
8. Rasch model, RW-DFF actually scolding or cursing 32 7982 8102 

contrast coding for Gender 

Note: Parameters that are used to model the distribution of the randorn effects are 
included in N par . 

Table 7.3 shows AIC and EIe values for each ofthe four models (first four 
lines in the table). As Ale and EIe values are smaller for the Rasch model 
than for the 2PL (i.e., 8124 < 8127 and 8225 < 8315), we can conclude that 
different slope parameters are not needed, and in fact, are detrimental to 
optimum fit. Further, the Ale indicates that there is evidence for uniform 
DIF (8099 < 8124) whereas, according to the EIe, models with no DIF are 
better (i.e., 8225 < 8287 and 8315 < 8495). Inspection of the interaction 
parameters of the uniform-DIF model (i.e., parameter J(ß) in Table 7.1) 
indicates that none of the want-items shows significant uniform DIF and 
that significant uniform (and negative) DIF occurs for actually cursing or 
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seolding in eaeh of the situations. This means that thresholds for aetually 
eursing or seolding are lower for men than for women, and henee that men 
have a higher probability to display these behaviors than women (or more 
strictly interpreted, to report that they would display these behaviors). 
When the nonsignifieant interactions between Gender and want-items are 
excluded from the analysis, DIF for Gender in aetually eursing and seolding 
is even more pronouneed (see Table 7.4). As ean be seen from line 5 in Table 
7.3, the AIC and BIC (8092 and 8238, respeetively) for this model are lower 
than for the model that includes uniform DIF for all but the last item (8099 
and 8287, respectively). 

As diseussed before, the effeet-size measure of an interaetion parame­
ter (i.e., exp( -8i )) ean be interpreted as the odds ratio of displaying the 
behavior in the situation rather than not doing so for men versus women 
after eorreeting for differenees in mean tendencies of showing aggression 
between men and women. These effeet-size measures are shown in Table 
7.4. For Shout the estimated odds ratios vary between 1.00 and 2.14 and 
they do not signifieantly differ from 1. For Curse and Seold the estimated 
odds ratio's vary between 1.90 and 3.80 and they are always signifieantly 
higher than 1 exeept for Curse in the first situation. 

TABLE 7.4. DIF parameter estimates, standard errors, effect-size measures and 
corresponding 95% confidence intervals in a model that assumes uniform DIF 
with respect to Gender for do-items (verbal aggression data). 

Situation Behavior 8 SE(8) exp(-8) 95% CI 

Bus Curse -.64 .37 1.90 [.92,3.91] 
Seold -1.03 .34 2.79 [1.43,5.43] 
Shout -.15 .34 1.16 [.60,2.25] 

Train Curse -1.34 .38 3.80 [1.81,7.97] 
Seold -1.30 .33 3.69 [1.92,7.08] 
Shout -.52 .36 1.69 [.84,3.40] 

Store Curse -1.21 .33 3.37 [1. 77,6.41] 
Seold -1.12 .35 3.07 [1.55,6.07] 
Shout -.76 .49 2.14 [.82,5.60] 

Call Curse -.83 .35 2.29 [1.16,4.53] 
Seold -.87 .32 2.38 [1.26,4.50] 
Shout .00 .42 1.00 [.44,2.27] 

Differential jacet junctioning 

As DIF for Gender oeeurs only for eertain types of items and eonsistently 
has the same sign, we ean attempt to model DIF in a more parsimonious 
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way by constraining these similar DIF effects to be equal. This leads to 
a DFF model with one facet variable for actually cursing or scolding in a 
situation versus all other items. Note that this item property corresponds 
to the earlier defined 'blaming' property of a behavior (see Chapter 2), but 
is now restricted to do-items. For this DFF model (on line 6 in Table 7.3) 
the AIC and BIC equal 8078 and 8183, respectively, which is lower than 
for the model that includes uniform DIF for all do-items (Le., 8092 and 
8238, respectively, as shown on line 5 in Table 7.3). Hence, the proposed 
DFF model can indeed be used to summarize DIF in a more parsimonious 
way. We may conclude that women show less blaming behavior than men, 
although their blaming tendency (wanting to blame) is equally high in the 
same situations. 

Random-weights differential Jacet junctioning 

In a last step of the analysis, we can investigate the consistency of the DFF 
effect over persons by making the DFF parameter random over persons. As 
explained in the section on RW -DFF, adopting a different coding scheme for 
the group variable (Le., contrast coding or dummy co ding) has important 
consequences for the kind of individual differences that are included by the 
model (see Table 7.2). In particular, dummy coding (Z = 1 for males and 
Z = 0 for females) would only allow individual differences on the DFF 
dimension for men, whereas contrast coding (Z = 1 for males and Z = -1 
for females) would allow individual differences on this dimension for both 
men and women. RW-DFF models using both dummy coding and contrast 
coding for Gender were estimated. The results are shown on lines 7 and 8 in 
Table 7.3. The RW-DFF model with contrast coding for Gender (the AIC 
and BIC equal 7982 and 8102, respectively) fits better than the RW-DFF 
model with dummy coding for Gender (the AIC and BIC equal 8055 and 
8167, respectively), and both RW-DFF models fit bett er than a model with 
a fixed DFF effect (the AIC and BIC equal 8078 and 8183, respectively). 

For the best fitting RW-DFF model (i.e., with contrast coding for Gen­
der) the logit of the probability of al-response for person p on item i 
equals 

(7.3) 

with X a facet variable which equals 1 for items that involve actually scold­
ing or cursing. Table 7.5 shows the parameter estimates (not including the 
item location parameters) that were obtained with the NLMIXED proce­
dure of SAS. 

The estimated mean of the overall underlying dimension () for males (i.e., 
J-L(J = -.04, p > .10) is not significantly different from the mean for females 
which was fixed at o. On the other hand, the estimated mean of the DFF 
dimension'Y for males (Le., J-L-y = -1.12, p < .001) differs significantly from 
the mean for females which was fixed at O. More specifically, it follows from 
Equation 7.3 that, for persons with the same value of (), on average, the 
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TABLE 7.5. Estimates and standard errors for parameters ofthe RW-DFF model 
with contrast coding for Gender (verbal aggression data). 

Group Parameter Estimate SE 

Female a 2 
() 2.05 .25 

a()'Y .05 .21 
a 2 

'Y 1.47 .30 
Male f..L() -.04 .21 

f..L'Y -1.12 .23 
a 2 

() 1.91 .43 
a()'Y .29 .37 
a 2 

1 
1.60 .54 

Note: Item Ioeation parameters are not included. 

odds to actually scold or curse rather than not to display these behaviors 
are exp(E(1]piIZ=l -1]piIZ=-l)) = exp((f..L() male - ßi - f..L'Y male) - (f..L() fem­

ßi + f..L'Y fem)) ~ 2.9 times higher for males than for females and most of 
this effect is explained by DFF since the difference is very small between 
f..L() male and f..L() female (f..L() in Table 7.5). Furthermore, the results indicate 
that the estimated variance-covariance matrix is similar for males and fe­
males: the variance of the DFF -dimension is about the same for females 
and males (1.47 and 1.60, respectively) and is almost as large as the vari­
ance of the overall underlying dimension in these groups (2.05 and 1.91, 
for females and males, respectively). Table 7.5 does not present p-values 
to test whether there is significant variation within each of the groups on 
the () or l'-dimension because there is no asymptotic theory available for 
the nonlinear mixed case. However, the fact that the estimates are at least 
three times as large as their standard errors suggest that the variation 
among persons on each dimension is substantial. Finally, Table 7.5 shows 
that the covariance between the overall underlying dimension and the DFF­
dimension is nonsignificant for both females (a()'Y = .05,p > .10) and males 
(a()'Y = .29,p > .10). 

As a further illustration of the difference between males and females in 
actually cursing or scolding, Figure 7.3 displays the probability to actually 
curse or scold as a function of () (i.e., the overall individual aggression effect) 
for males and females with a mean score in their own Gender group (i.e., 
f..L'YJ, a low score (i.e., f..L'Y. - 2a'Y) , and a high score (i.e., f..L'Y. + 2a'Y) on the 
DFF -dimension. Note that (because of the contrast coding with + 1 and -1) 
females with a higher l'-score have generally a higher probability to curse or 
scold whereas males with a higher l'-score have a lower prob ability to curse 
or scold. In other words, for females the l'-dimension reflects a tendency to 
actually blame other persons whereas for males it indicates the tendency 
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FIGURE 7_3_ Probability to actually curse or scold as a function of () for males 
and females with a mean score (Le_, f-l-y), a low score (Le_, f-l-yz - 217-yz) and a high 
score (Le_, f-l-yz + 217-yz) in their own Gender group on the ')'-dimension_ 

to inhibit this type of behavioL As can be seen in Figure 7_3 males have on 
average a higher probability to curse or scold than females_ However, we 
also see that there is substantial variation on the DFF-dimension within 
each Gender group and that the scores of males and females on the DFF­
dimension show considerable overlap_ 

7.4 Dynamic interaction models 

In dynamic interaction models, item responses are modeled on the basis of 
other responses possibly in addition to static predictors_ The models are 
sometimes denoted as conditional models (Fahrmeir & Tutz, 2001) because 
they are built by specifying the distribution of a response conditional on 
other responses rather than by specifying the joint distribution of all the 
item responses_ In this chapter we will only provide abrief description of 
conditional models and afterwards focus on the application of the models to 
the verbal aggression data_ However, a more fully theoretical treatment of 
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the models is given in Chapter 10 where they are also denoted as 'recursive' 
models. 

Depending on the nature of the responses, different types of dynamic 
models can be of interest. First, when the components of the vector of 
responses can be considered as ordered (e.g., longitudinal data), it can be 
interesting to use transition models for modeling responses on the basis of 
previous out comes (see Chapter 4, and Diggle et al. , 2002). In this case, 
the joint distribution of the item responses is decomposed in the following 
way: 

Pr(Yp1 = Ypl,···, YpI = YpIIX) = 
Pr(Yp1 = YplIX)Pr(Yp2 = Yp2lYpl, X) ... Pr(YpI = YpIIYpl, ... , Yp,I-l, X), 

(7.4) 

with X a set of static predictors. An example of a transition model is 
the first-order Markov model which assumes that responses to subsequent 
test items depend on a random intercept, a fixed item location and on the 
response to the previous item. When this kind of dependence is added to 
the Rasch model, the logit of the success prob ability of person p on item i 
(i = 2, .. ,1) reads 

7]pi = Bp - ßi + 8Wpi, 

with Wpi = Yp,i-l. Another example is the dynamic Rasch model which 
assumes that the success prob ability is determined by a random intercept, 
a fixed item location and the sum of successes on previous items. This 
model can be useful to investigate learning effects in achievement testing. 
The logit of the success probability equals 

7]pi = Bp - ßi + 8Wpi, 

. h ",i-l 
Wlt Wpi = uh=l Yph· 

Second, when some components of the response vector can be viewed as 
dependent - for instance because they share the same stimulus content -
dynamic models can be useful to capture the dependence between these 
components that goes beyond the overall underlying dimension. For ex­
ample, in the context of the verbal aggression data it can be interesting 
to dynamically model responses to items of one mode on the basis of re­
sponses to items of the other mode (e.g., Do vs Want). As such, two types 
of dependence models can be considered: (1) a model that explains doing 
on the basis of wanting, and (2) a model that explains wanting on the basis 
of doing. 

We will formally describe the model that explains doing on the basis 
of wanting. This model is further denoted as the Want-Do model. Models 
in which wanting is explained on the basis of doing, furt her denoted as 
Do-Want models, are analogous. 

Consider the items of Table 1.1 of Chapter 1. For a Want-Do model 
with situation-behavior specific dynamic weights, the joint distribution 
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Pr(Yh,YCh+12)IO,ßh,ßCh+12),8h) ofthe want and do behavior for a partieu­
lar situation-behavior pair h (h = 1, ... , 12) equals 

Pr(Yh 10, ßh)Pr(YCh+12) IYh, 0, ßCh+12) ' 8h) 

exp(Yh(O - ßh)) exp(YCh+12)(0 - ßCh+12) + 8hYh)) = x ----~~~~~--~----~ 
1 + exp(O - ßh) 1 + exp(O - ßCh+12) + 8hYh) 

(7.5) 

_ exp(Yh(O - ßh) + YCh+12)(0 - ßCh+12)) + 8hYhYCh+12)) 

- 1 + exp(O - ßh) + exp(O - ßCh+12) + 8hYh)+ 
exp(20 - ßh - ßCh+12) + 8hYh) 

To estimate this model with the NLMIXED procedure of SAS, in addition 
to a random intercept and item indieators, we include, for each situation­
behavior pair h, a dynamic predietor Wpih that equals 1 for the do-item 
if the corresponding want-item equals 1, and 0 otherwise. The logit of the 
probability of aI-response for person p on item i (i = 1, ... ,24) can be 
expressed as follows: 

12 

'T/pi = Op - ßi + ~ 8hwpih. (7.6) 
h=l 

The model in Equation 7.6 assurnes that the weights of the dynamie predie­
tors are specific to the situation-behavior pair. If needed, one can constrain 
some of the dynamie weights to be equal, for instance, 81 = 82 . Formally, 
this can be done by replacing W pi1 and Wpi2 by their sum W pi1 + Wpi2' 

Note that models based on the decomposition in Equation 7.4 are asym­
metrie in the sense that responses have an influence on subsequent re­
sponses and not viee versa. If the components of the vector of responses 
are not ordered, it may be of interest to include mutual dynamie predie­
tors. For example, one might try to explain doing on the basis of wanting 
and vice versa. Here one is positing no psychological order but only a mu­
tual consistency. Such a model would be characterized by two families of 
conditional distributions for each situation-behavior pair h (h = 1, ... , 12): 

1 Pr(YCh+12) IYh, 0, ßCh+12) , 81h) 

Pr(YhIYCh+12), 0, ßh, 82h) 

exp(YCh+12)(0 - ßCh+12) + 81hYh)) 

1 + exp(O - ßCh+12) + 81hYh) 

exp(Yh(O - ßh + 82hYCh+12))) 

1 + exp(O - ßh + 82hYCh+12)) . 
(7.7) 

However, it is important to note that there is no guarantee that the fam­
ilies in Equation 7.7 are compatible in the sense that there exists a joint 
distribution for (Yh, Yh+12) with the given families as its conditional distri­
butions (Arnold & Press, 1989; Gelman & Speed, 1993). In fact, it is easy 
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to show that the densities in Equation 7.7 are only eompatible if the dy­
namie weights blh and b2h are equal (see Theorem 3.1, in Arnold & Press, 
1989). The resulting joint distribution then turns out to be the same as for 
the constant combination dependence model-( (CCDM), a term used by 
Hoskens and De Boeek (1997), namely: 

1 + exp(B - ßh) + exp(B - ß(h+12») + exp(2B - ßh - ß(h+12) + bh)' 
(7.8) 

Henee, the model that includes equal dynamic weights in both direetions 
turns out to be the equivalent of asymmetrie loeal item dependenee model. 
On the other hand, the joint densities of the CCDM (Equation 7.8) and of 
the asymmetrie Want-Do model (Equation 7.5) clearly differ. The relation­
ship between dynamie and symmetrie models is diseussed in more detail 
in Chapter 10 where they are referred to as reeursive and nonreeursive 
models, respeetively. 

With respeet to the interpretation of the weights of the dynamie predie­
tors, we note that, for the Want-Do model 

bh = logit (Pr(Y(h+12) = 11Yh = 1, B)) 
-logit (Pr(Y(h+12) = 11Yh = O,B)), 

(7.9) 

which implies that the exponent of the interaction parameter bh ean be 
interpreted as the ratio of (1) the odds of aetually displaying an aggressive 
behavior rather than not doing so, given that one also wanted to display 
the behavior, and (2) the odds of actually displaying an aggressive behavior 
rather than not doing so, given that one did not want to display the behav­
ior. For the CCDM, the exponent of the interaction parameter bh ean be 
interpreted as the loeal odds ratio of having a 1 on both eomponents (want 
and do) or a 0 on both eomponents rather than having different scores on 
both eomponents, that is, 

bh = log (pr(Yh = 1, y(h+12) = 1IB)Pr(Yh = 0, y(h+12) = OIB)). (7.10) 
Pr(Yh = 1, Y(h+12) = OIB)Pr(Yh = 0, y(h+12) = 11B) 

7.5 Application of dynamic interaction models 

As an illustration of dynamic interaction models, we model loeal item de­
pendencies between want and do items in the verbal aggression data. Three 
types of models are eompared: (1) adynamie model that explains doing on 
the basis of wanting (Want-Do model), (2) adynamie model that explains 
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wanting on the basis of doing (Do-Want model), and (3) a constant combi­
nation dependence model (CCDM) which actually assigns equal weights to 
both directions. Furthermore, in order to investigate whether dependencies 
between want-items and do-items depend on specific situations or behav­
iors, for each model, the dynamic weights are (1) either not constrained 
(i.e., situation-behavior specific dynamic weights), or constrained in dif­
ferent ways, yielding (2) weights that are constrained to be equal among 
situations (behavior-specific dynamic weights), (3) weights that are con­
strained to be equal among behaviors (situation-specific dynamic weights), 
(4) weights that are constrained to be equal across both situations and 
behaviors (i.e., one general dynamic weight). These four types of depen­
dence will be denoted SB-specific, B-specific, S-specific and non-specific, 
respectively. All the models were estimated with the NLMIXED procedure 
of SAS using the options described in Section 7.7 for the DIF models. 

TABLE 7.6. Deviance, AlC, BlC and number ofparameters (Npar) for the Rasch 
model and various dynamic extensions (verbal aggression data). 

Model Equality constraints Deviance AIC BIC N par 

Rasch 8073 8123 8216 25 
Want-Do none (SB) 7904 7978 8117 37 

situations (B) 7919 7975 8080 28 
behaviors (S) 7939 7997 8106 29 
sit. and beh. (non) 7949 8000 8098 26 

Do-Want none (SB) 7908 7982 8121 37 
situations (B) 7926 7982 8088 28 
behaviors (S) 7953 8011 8119 29 
sit. and beh. (non) 7964 8016 8114 26 

CCDM none (SB) 7907 7981 8120 37 
situations (B) 7920 7976 8081 28 
behaviors (S) 7944 8002 8111 29 
sit. and beh. (non) 7951 8003 8101 26 

Table 7.6 presents a summary of fit measures (Deviance, AIC, BIC) and 
complexity (number of parameters) for the estimated models. For reasons 
of comparison, an independence model which assumes responses to want­
items and do-items to be independent given e (i.e., the Rasch model) is 
also included in Table 7.6. We will first discuss models with SB-specific 
dynamic weights and afterwards investigate whether the dynamic weights 
can be constrained to be equal across situations or behaviors. 
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Models with SB-specijic dynamic weights 

As ean be seen in Table 7.6, the inclusion of SB-specifie dynamic weights 
yields a better fit to the data than the Raseh model: For the Want-Do 
model, the Do-Want model, and the CCDM, AIC values (7978, 7982 and 
7981, respeetively) and BIC values (8117, 8121, 8120, respeetively) are 
lower than for the Raseh model (i.e., AIC=8123 and BIC=8216). Also, 
for eaeh dynamic model, a LR test in which the devianee of adynamie 
model is eompared to that of the Raseh model favors the dynamie model 
(X2 (12) = 169, p < .001; X2 (12) = 165, p < .001; X2 (12) = 166, p < .001, 
for the Want-Do model, the Do-Want model, and the CCDM, respectively). 
The three proposed models offer a rather similar deseription of the data: 
AIC, BIC and Devianee values are about the same, and the estimated 
dynamie weights and standard errors of estimated dynamie weights are 
very similar (i.e., eorrelations higher than .99). 

TABLE 7.7. Dynamic weights, standard errors, effect size measures, and corre­
sponding 95% confidence intervals for the Want-Do model with SB-specificity 
(verbal aggression data). 

Situation Behavior J SE(J) exp(J) 95% CI 

Bus Curse .12 .30 1.13 [.63,2.04] 
Seold .82 .28 2.27 [1.31,3.93] 
Shout 1.17 .31 3.22 [1. 75,5.93] 

Train Curse .17 .32 1.19 [.63,2.23] 
Seold 1.12 .30 3.06 [1.69,5.51] 
Shout 1.95 .42 7.03 [3.07,15.98] 

Store Curse .30 .27 1.35 [.79,2.31] 
Seold 1.57 .34 4.81 [2.47,9.44] 
Shout 1.62 .48 5.05 [1.97,12.87] 

Call Curse 1.04 .30 2.83 [1.57,5.06] 
Seold 1.41 .29 4.10 [2.31,7.28] 
Shout 2.21 .40 9.12 [4.16,20.01] 

Table 7.7 presents estimated dynamie weights and eorresponding stan­
dard errors for the best fitting model with SB-specifie dynamie weights, 
which is the Want-Do model. To aid interpretation of the dynamie weights, 
Table 7.7 also displays the exponent of the dynamie weights and the as­
sociated 95% eonfidenee interval for the exponent of the dynamie weight. 
The results in Table 7.7 indieate that persons who want to seold or shout 
have a higher prob ability to also aetually display these behaviors than ean 
be expected from the underlying dimension and the item parameters. For 
eursing this is only true for one of the four situations. For shouting, the 
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dynamic weights are rather large (odds ranging from 3.22 to 9.12), for scold­
ing, the weights are moderately large (odds ranging from 2.27 to 4.81) and 
for cursing, the weights are rather small and sometimes not significantly 
larger than 0 (odds ranging from 1.13 to 2.83). 

M adels with canstrained dynamic weights 

As can be seen in Table 7.6, models with B-specificity yield the best balance 
between fit and complexity according to the AIC and BIC: Their AIC and 
BIC values are lower than those for models with SB-specificity, with S­
specificity, or with non-specificity. Also, LR tests indicate that for neither 
of the three types of models (Want-Do, Do-Want, CCDM) strong evidence 
exists against the dynamic weights being equal across situations (two p's > 
.05, one p = .04). Furthermore, models with S-specificity or non-specificity 
do less weIl than the model with SB-specificity on the basis of LR tests (all 
p's < .001) 

TABLE 7.8. Dynamic weights, standard errors, effeet-size measures, and eorre­
sponding 95% eonfidenee interval for the Want-Do Model with B-specifie dynamic 
weights (verbal aggression data). 

Behavior 15 SE(15) 

Curse .42 .15 
Scold 1.21 .15 
Shout 1.68 .19 
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FIGURE 7.4. Probability to eurse (left panel) or shout (right panel) for persons 
who also want (~), or do not want (- - -) to eurse or shout in a specifie situation 
(Bus). 
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Table 7.8 presents the estimated dynamic weights, measures of effect size 
and the corresponding 95% confidence intervals for the Want-Do Model 
with B-specificity. Persons who want to curse, scold, or shout have a higher 
probability to also actually display these behaviors than can be expected 
on the basis of item parameters and the underlying dimension. For cursing, 
scolding and shouting the odds of actually displaying the behavior rat her 
than not doing so given that one wanted to act in that way are, respectively, 
1.52, 3.35 and 5.37 times larger than the odds of actually displaying the 
behavior rather than not doing so given that one did not want to display 
the behavior. The odds are significantly larger than 1 for each of the three 
behaviors, but they can be regarded as large for shouting, of intermediate 
size for scolding and rather small for cursing. For cursing and shouting the 
size of the dynamic weight is also visualized in Figure 7.4 which displays 
the prob ability to actually curse or shout for persons who say they want 
or do not want to curse/shout in a specific situation. 

A possible explanation for the stronger association between doing and 
wanting for shouting than for scolding or cursing is that the former kind of 
aggressive behavior is typically not directed towards others, which means 
that aggression is unlikely to be inhibited by, for instance, the presence 
of other persons. 'Shouting' in Dutch ('het uitschreeuwen') does not have 
a blaming nature, but primarily an expressive nature instead. Wanting 
and doing may be correlated more highly because individual differences in 
inhibition play less of a role. 

7.6 Concluding remarks 

In this chapter it was explained how different phenomena such as DIF and 
LID can be modeled by adding person-by-item predictors to standard item 
response models. It was demonstrated that the NLMIXED procedure of 
SAS can be used to estimate all the presented models. In the following 
paragraphs we will list some advantages and drawbacks of our approach 
for modeling DIF or local item dependence as weIl as describe some furt her 
extensions that could be handled with the NLMIXED procedure and other 
similar software for generalized linear and nonlinear models. 

Regarding DIF, an advantage of using general software is that it allows 
us to build and estimate a wide variety of models. For instance, it allows us 
to use DFF models for modeling DIF in a set of items on the basis of item 
properties or to use RW-DIF (or RW-DFF) models for modeling individual 
differences in DIF (or DFF) among persons of a particular group. Para­
doxically, this generality is also an important drawback as the estimation 
is slower than with specialized software for standard item response models 
such as the Rasch model, (e.g., BIMAIN 2; Zimowski, Muraki, Mislevy & 
Bock, 1994). 
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Another advantage of our approach is that it allows us to jointly test for 
both uniform and non-uniform DIF in a set of items. We do not know of 
any other software package that fully supports this type of analysis. For in­
stance, BIMAIN 2 uses the 3 PL to model item responses in each group but 
only allows one to check for DIF in the item locations. Nonparametrie ap­
proaches such as SIETEST (Shealy & Stout, 1993a,b) or crossing SIE TEST 
(Li & Stout, 1996) allow checking for unidirectional DIF or crossing DIF, 
respectively, in an item, a set of items or the test as a whole, but they 
do not allow checking for both of these DIF types simultaneously. Unidi­
rectional DIF is related to uniform DIF as it implies that the DIF is in 
favor of the same group for all values of the underlying dimension, but is 
more general because the size of the DIF can be different depending on the 
value of the latent trait that it is conditioned upon. Crossing DIF is related 
to non-uniform DIF in that it implies nonparallel item response functions 
but it is somewhat more specific because it also requires that item response 
functions intersect. Finally, the logistic regression procedure (Swaminathan 
& Rogers, 1990) can be used to jointly check for uniform and non-uniform 
DIF. However, this procedure uses the total test score as a proxy for the 
random intercept. 

Our discussion of DIF was restrieted to the modeling of binary data 
that stern from two populations. However, it is rather straightforward to 
model DIF for polytomous items (Moore, 1996; Muraki, 1999). Such analy­
ses could be handled with general GLMM and NLMM software as weIl. 
Symmetrie dependence models for polytomous data are described by Ip, 
Wang, De Boeck and Meulders (2003) who applied the models to the ver­
bal aggression data and listed the code for estimating the models with the 
NLMIXED procedure of SAS. For dynamie models, an extension to the case 
of polytomous data is also straightforward as it simply boils down to mod­
eling the category-specific probabilities for a particular item on the basis of 
previous responses. For instance, when using the partial credit model for 
totally ordered responses, one could include dynamic predictors to model 
the prob ability of responding in a particular category for a particular item 
on the basis of the observed number of responses in each of the categories 
on foregoing items. 

A second straightforward extension of the local dependence models that 
have been discussed in this chapter consists of making the dependence para­
meters (CCDM) or the effects of dynamie predictors (dynamic interaction 
models) random over persons. Such random-weights models can easily be 
formulated along the lines of the RW-DIF or RW-DFF models that were 
presented in this chapter. Random-weights symmetrie dependency models 
have recently been discussed by Hoskens and De Boeck (1997) and by Ip 
et al. (2003). 
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7.7 Software 

The NLMIXED proeedure of SAS V8 was used for all analyses reported in 
this section. A nonadaptive Gaussian quadrature method with 20 quadra­
ture points was used to approximate the likelihood and the Newton-Raphson 
teehnique was used for optimization. 

7. 7.1 Uniform DIF for actually cursing or scolding (verbal 
aggression data) 

Code 

PROC NLMIXED data=aggression_dich method=gauss 
technique=newrap noad qpoints=20; 
PARMS bl-b24=O dl-d8=O mu=O sdO=O.5 sdl=O.5; 
beta=bl*xl+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+bl0*xl0+bll*xll+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
+b2l*x2l+b22*x22+b23*x23+b24*x24; 
delta=dl*x13+d2*x14+d3*x16+d4*x17+d5*x19+d6*x20+d7*x22+d8*x23; 
ex=exp(theta-beta-delta*male); 
p=ex/ (1 +ex) ; 

MODEL Y '" binary(p); 
RANDOM theta", normal (male*mu, (1-male)*(sdO**2)+male*(sdl**2)) 

subject=person; 
ESTIMATE 'sdO**2' sdO**2; 
ESTIMATE 'sdl**2' sdl**2; 
RUN; 

Comments 

1. The data set aggression_dich eontains a eolumn of binary responses 
y, a eolumn of person identifieation labeled person, a eolumn of Gender 
eoding, named as male (male=O for females and male=l for males), and 
24 eolumns of 24 item indieator variables named from xl to x24. 
2. sdO is the standard deviation of the random intereept for females; mu 
and sdl are the mean and standard deviation of the random intereept for 
males, respectively; bl to b24 are 24 item loeation parameters. dl to d8 
are eight DIF parameters for actually eursing or seolding. 
3. () is assumed to follow a N(0,sd02 ) distribution for females and a N(mu, 
sd12 ) distribution for males. 
4. The two ESTIMATE statements are used to obtain estimates of the vari­
anee of the underlying dimension for males and females. 
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7.7.2 RW-DFF for actually scolding or cursing using contrast 
coding for Gender (verbal aggression data) 

Code 

PROC NLMIXED data=aggression_dich method=gauss 
technique=newrap noad qpoints=20; 
PARMS bl-b24=O muthl=O mugal=O sdthO=O.5 sdthl=O.5 
sdgaO=O.5 sdgal=O.5 cothgaO=O cothgal=O.5; 
beta=bl*xl+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+bl0*xl0+bll*xll+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
+b21*x21+b22*x22+b23*x23+b24*x24; 
ex=exp(theta-beta-gamma*x25*gender); 
p=ex/ (1 +ex) ; 
MODEL Y rv binary(p); 
RANDOM theta gamma rv normal([male*muthl,male*mugal], 
[(1-male)*(sdthO**2)+male*(sdthl**2), 
(l-male)*cothgaO+male*cothgal, 
(1-male)*(sdgaO**2)+male*(sdgal**2)]) subject=person; 
RUN; 

Comments 

1. The data set aggression_dich contains an additional column of facet 
co ding for actually cursing or scolding, namely x25 (x25=1 for do-items 
regarding cursing or scolding x25=0 otherwise). 
2. gamma is the random DFF parameter for actually cursing or scolding; 
muthl and mugal are the means of Band 'Y for males; sdthO, cothgaO, and 
sdgaO are the parameters of the variance-covariance matrix for females; 
sdthl, cothgal, and sdgal are the parameters of the variance-covariance 
matrix for males. 
3. (B,'Y) rv N([0,0],[(sdthO)2,cothgaO,(sdgaO)2]) for females and (B,'Y) 
rv N([muthl,mugal], [(sdthl)2,cothgal, (sdgal)2]) for males. 

7.8 Exercises 

1. Suppose we have a test data set which consists of the responses of 900 
students to 20 items (450 students from each of two countries of inter­
est), and we are interested in finding out whether items 11 to 20 function 
in the same way for different countries. Explain how models that include 
uniform or non-uniform DIF can be formally specified and how they can 
be estimated with NLMIXED. When building the model, assurne that the 
2PL can be used to adequately describe the item responses in each group. 
Suppose that you find uniform DIF in item 12. Explain how a model in 
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which this interaction effect is random over persons can be formally speci­
fied and how this model can be estimated with NLMIXED. Formulate and 
characterize models that make use of dummy co ding and contrast coding. 
Explain how the co ding scheme of the group variable affects the kind of 
individual differences that are introduced by the model. 

2. Suppose a test for deductive reasoning with 15 items is administered 
to sampies from three populations indicated by a grouping variable Z 
(Z = 1,2,3 for populations A, Band C, respectively). Furthermore, sup­
pose that item response functions can be adequately described by the 2PL 
and that it is reasonable to assume that the first five items have equiva­
lent item response functions across groups. Formulate a model to simulta­
neously test for differences in location and slope parameters between (1) 
groups A and C and (2) Band C. It helps to use two dummy variables 
D1 and D2 to code the information in Z. Assume D1 = D2 = 0 for Z = 3; 
D1 = 1 and D2 = 0 for Z = 1; D1 = 0 and D2 = 1 for Z = 2. Elaborate 
on how you could model individual differences within different populations. 

3. Suppose you analyze the original trichotomous verbal aggression data 
in which subjects were asked to what extent they would displaya partic­
ular behavior in a particular situation (O=no, 1=perhaps, 2=yes). Specify 
and estimate a partial credit model for these data (see also Chapter 3) that 
includes behavior-specific dynamic predictors to model actual behavior on 
the basis of intended behavior. 

4. In the section on dynamic models ofthis chapter, a Want-Do model with 
behavior-specific dynamic predictors is selected (see Table 7.8) to model the 
verbal aggression data. Specify and estimate the model that also includes 
a random weight for the dynamic predictor associated to 'shouting.' Com­
pute the empirical Bayes estimates for the overall underlying dimension 
and for the random effect of the dynamic predictor. 

5. Specify and estimate a model to test whether the dynamic effects in­
cluded in the Want-Do model of Table 7.8 in this chapter are different for 
males and females. For dynamic effects that differ across groups, estimate 
a model that captures the differences among males and females as well. 
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Part 111: Models with internal 
factors 
Using external factors to explain variation requires fixed apriori knowledge 
about what might playa role in the variation. Such knowledge is not always 
available or perhaps not precise enough to be used in a model ~ in such a 
situation, one can consider using intern al factors, where the values of the 
predictors are derived from the data, instead of being given as external 
information. In a first type of internal factor, one may have no idea at 
all of the relevant predictors or one may have some idea without having 
precise knowledge of the values of these predictors. In such situations it 
can make sense to consider models that deal with 'unknown' predictors or 
predictors with values that are 'not known apriori. ' These are together 
called latent properties, and they can relate to either persons or items. 
Examples are: (a) the so-called 'item discrimination' parameters (an item 
predictor) and (b) latent dass membership (a person predictor). A second 
type of internal factor is the observed random predictor. This is the case 
when in the model (some of the) observations are considered as a function 
of other (modeled) observations, such as responses to other items (thus, a 
person-by-item predictor). 

IH.1 Latent item properties 

Think of a simple model with four item properties defined as follows. The 24 
items from the example study can be divided into four groups: want-items 
and do-items concerning self-to-blame situations, and want-items and do­
items concerning other-to-blame situations. Let us define for each of these 
a dummy coded item property: XiI, X i2 , X i3 , and X i4 , so that X ik = 1 if 
item i has property k (k = 1,2,3,4), and X ik = 0 if not. Let us now also 
define a random person effect for each of these properties, while omitting 
the random person intercept. The four random effects would be (}pI, (}p2, 

(}p3, and (}p4. This model is a four-dimensional model, with one dimension 
for each of the four groups of items. It is an example of between-items 
multidimensionality or a perfect simple structure. The correlation between 
the four random effects can be estimated, or it can be fixed to a specific 
value, most commonly to O. The corresponding logit formula would read 
as: 

(lIU) 



242 

with ßi as the effect of the item indicator i. This model can be seen as a 
confirmatory factor analysis model, with the X s as the fixed loadings and 
the (}s as the factor scores. 

One could relax this model so that not aB X s are equal to one, on the 
basis of the conjecture that not aB items within the group are equaBy 
sensitive to the meaning of the item group (e.g., wanting to be verbaBy 
aggressive in an other-to-blame situation). This would mean that some 
items have higher values and others have lower values. (We don't restrict the 
models to have 'loadings' between -1 and +1.) In a similar way, items from 
one group may resemble in a slight way items from another group, so that 
X ik > 0 even if item i does not belong to item group k. A possible solution 
for these problems is to ask experts to make prototypicallity ratings of aB 
items for each of the four groups. This solution would imply aredefinition 
of the X s but they would still be predictors with values that are given a 
priori. 

A drasticaBy different approach would be not to use external information 
to determine the X s, but to rßly exclusively on internal information. In 
other words, the X s would become parameters to be estimated from the 
data. The external factors are then replaced with 'internal factors,' denoted 
with os: Oir for the value of item i on internal factor r, r = 1, ... , R. For 
the rest the model remains the same. The resulting formula in logit terms 
reads as foBows: 

(III.2) 

with (}pr as the random effect of latent property Or. 

For R > 1, the os (and the corresponding (}s) can be rotated, just as 
in principal components models and factor analysis models. For the case 
of R = 1, this is the 2PL model: 'r/pi = Oi(}p - ßi, or, in other words, a 
model with an item-weighted random intercept. Multidimensional models 
with external factors, and similar models with internal factors, including 
the 2PL model are described in Chapter 8. 

Thus far the internal factors were defined as factors with a random person 
effect, as in Equation III.2. This is not a necessity. An alternative is that the 
effects are fixed. This leads to a kind of model that aBows for an analysis 
of items in terms of a number of unobserved item properties: 

(III.3) 

with ßr as the fixed effect of the latent item properties 0r, and with (}p as 
the random intercept. 

Suppose these latent item properties are the difficulties of underlying 
component items, then the item difficulty in question, ßi, can be seen as 
decomposed into a weighted sum of the difficulties of the underlying R 
component elements. This idea is applied in Chapter 9. 

As a consequence of the latent nature of the properties and the fact 
that their weight is a parameter (random or fixed), the resulting models 
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are no longer linear models but nonlinear models. They contain one or 
more bilinear terms (a product of two parameters). Therefore the models 
of Equations III.2 and III.3 are not GLMMs but NLMMs. 

What we called latent item properties are properties with values that are 
parameters to be estimated. One may think of these properties as properties 
one has forgotten to include or which one was not able to include because 
no observations were made or could be made. In a similar way one may 
have omitted person properties, even when they are an important source 
of variation, which is the topic of the next section. 

III.2 Latent person properties 

Let us assume a random intercept model and suppose that Gender had 
a rather large effect on the verbal aggression tendency, but that, due to 
an oversight, it was not included as apredictor in the model. Given the 
unaccounted effect of Gender, the actual distribution of the persons would 
be different from a normal distribution but, because we have no extant 
predictor, the normal distribution would still be assumed for the random 
intercept. If a normal distribution applies for each of the two groups, then 
a mixt ure of two normal distributions holds for the total group. Note also 
that, when Gender is not included in the model, one cannot tell with cer­
tainty who belongs to which distribution (to which Gender), although it is 
possible to derive a posterior probability. This is an easy example, because 
one can simply include Gender in the model in order to obtain again the 
normal distribution after the effect of Gender is accounted for. In a more 
realistic case, one is not aware of the person predictors that are omitted, 
so that this easy remedy does not help. 

Sometimes the problem is inherent and cannot be solved by including ex­
ternal factors. For example, the concept of 'personality type' implies that 
the individual differences are not continuous but discrete. Suppose people 
differ as to what makes them angry and whether or not they inhibit their 
verbal aggressive tendency when angry. If these differences are not contin­
uous, the following four types may exist (see Figure II I. 1 ): 

(1) impulsive other-deprecatory (easily angry because of others' failures, 
and not inhibited), 

(2) restrained other-deprecatory (easily angry because of others' failures, 
and inhibited), 

(3) restrained self-deprecatory (easily angry because of one's own fail­
ures, and inhibited), 

(4) impulsive self-deprecatory (easily angry because of one's own failures, 
and not inhibited). 

Figure III.l gives a graphical representation of a hypothetical distri­
bution of the four types in a two-dimensional space of ()p do-want and 



244 

(}p other-self> given the predictors Xi do-want and Xi other-self. The ovals 
denote the 95% contours ofthe bivariate normal distributions (for the case 
of independent random effects (}p do-want and (}p other-self). As can be seen, 
the discrepancy between doing and wanting is negative for most people, but 
for two types (Type 4 and Type 1) it is small in comparison to two other 
types with strong inhibition effects (Type 3 and Type 2). Looking at it 
in the other way, there are people who become angry primarily because 
of their own faults (Type 4 and Type 3), and others who become angry 
primarily because of other people's faults (Type 1 and Type 2). 

9p do-want 

GG 
FIGURE 111.1. Four verbal aggression types. 

In the example in Figure IlI.1, the global bivariate distribution is a mix­
ture of four different single distributions. Each single bivariate distribution 
of the four is a component of the mixt ure for the total group and defines a 
latent person group, also called a latent class. These components are unob­
served categorical (discrete) person properties. Given that these types are 
defined by the data, there is no way to define an external factor that could 
have captured these types. The latent person properties we just discussed 
are not forgotten external factors but genuine latent properties. Using this 
model it is not possible to tell with certainty to which latent group a person 
belongs, but it is possible to estimate the probability of each latent group, 
and thus also the estimated size of each group, and it is also possible to 
derive a posterior probabilityfor each person and each group. 

The formula for a model with binary latent person properties reads as 
follows: 

K K 

"'pi = L O!pl(}pk1 X ik + ... + L O!pR(}pkRXik - ßi, (IIl.4) 
k=l k=l 

with O!pr as the binary value of person p on latent binary property r, O!pr = 
0, or 1, so that E~l O!pr = 1; with (}pkr as the corresponding random effect 
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of item property k (we ass urne that the multivariate normal distribution of 
the ()s differs depending on T; and with the ßi as the item difficulty). When 
R = 1, Equation III.4 reduces to the general formulation of Equation III.I. 
The model formulation in Equation III.4 shows the similarity with other 
models in this volume. 

In the example there are two item properties, Xi da-want and 
Xi ather-self, and four classes of persons. A more complicated version of 
this model would be one with item difficulties that also depend on the class 
a person belongs to. 

The types in Figure III.l are heterogeneous types because within a type, 
people vary on the two random effects: ()p ather-self and ()p da-want. The 
implication is that the Tjpi (and 'lrpi) differ depending on the person within 
each latent class. In most applications in psychology and education, ho­
mogeneous latent classes are used. They would be represented as points 
in Figure III.I. Homogeneous and heterogeneous mixt ure models are dis­
cussed in Chapter 11, but more attention is given to the latter than to the 
former. 

Note that the mixt ure models are not linear models, for the same reason 
as for the models with latent item properties. They imply a multiplication 
of a latent (discrete) person property and its effect. 

III.3 Observed randorn predictors 

The third type of internal factor consists of responses to other items or 
functions thereof. The responses to an item i (Ypi ) are modeled as a function 
of observed responses on one or more other items, i', i", ... (Ypi" Ypill, ... ). 

Most often this is done in combination with a random effect, such as a 
random intercept. For example, 

(III.5) 

with W pih = Ypi" so that i =I- i', and subscript h denotes the person-by­
item predictor that is defined by the responses to item i. The notation for a 
person-by-item property is used, since the responses on another item define 
a person-by-item property. The values ofthe property depend on the person 
(her response) and the item (the responses matter for item i, but not for 
all items). This kind of predictor is used in dynamic interaction models, 
as described in Chapter 7. The predictors are not fixed-value predictors 
but random variables instead (although as predictors they enter the model 
with their realized and thus fixed value). Both Chapter 7 and Chapter 10 
describe such dynamic interaction models, also called conditional models 
in the statistical literat ure. 

As is explained in Chapter 4, apart from conditional modeling, there are 
two other ways for explaining correlated data: random-effects models and 
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marginal models. In this volume, we chose to concentrate on random-effects 
modeling, and most commonly random intercept models. However, it might 
be a good strategy to combine random effects with aspects from the other 
two modeling approaches: conditional modeling and marginal modeling. 
This is further explained in Chapter 10 on residual dependence. 



Chapter 8 

Multiple person dimensions 
and latent item predictors 

Frank Rijmen 
Derek Briggs 

8.1 Introduction 

In this chapter, we discuss two extensions to the item response models pre­
sented in the first two parts of this book: more than one mndom effect for 
persons (multidimensionality) and latent item predictors. We only consider 
models with random person weights (following a normal distribution), and 
with no inclusion of person predictors (except for the constant). The ex­
tensions can be applied in much the same way to the other models that 
were discussed in the first two parts of this book. 

The not ion that a data matrix can be characterized by multiple dimen­
sions has its roots in classical factor analysis. When the data matrix con­
sists of continuous variables, classical factor analysis may be applied as 
the linear regression of observed variables on latent dimensions. For di­
chotomous variables (e.g., items), the classical factor analytic model must 
be adjusted such that the expected values of the observed variables are 
a nonlinear function of the latent dimensions. Traditionally, this nonlin­
ear response function has been the normal-ogive cumulative distribution 
function (cdf; i.e., a probit link). The nonlinear factor analysis model is 
based on the matrix of tetrachoric correlations, and proceeds by assum­
ing that the values of each observed dichotomous variable are determined 
by whether or not a threshold on an unobserved continuous variable is 
exceeded. When a normal-ogive response function is specified, the parame­
ters can be estimated by generalized least squares (Christofferson, 1975; 
McDonald, 1967; Muthen, 1978). It has been shown that the parameters 
from a factor analysis of dichotomous variables can be readily transformed 
into the item-specific parameters typical of item response theory (Knol & 
Berger, 1991). 

There are two principle distinctions between traditional factor analy­
sis models for dichotomous items and what we will describe as multidi­
mensional item response models (MIRMs). First, the former model is lim­
ited to the information from pairwise (tetrachoric) correlation coefficients, 
and does not take into account the full information available in each per-
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son's response vector. Second, the former models differ philosophicaHy from 
MIRMs in that they are primarily concerned with data reduction and sum­
mation, and less so with describing and interpreting the characteristics of 
items used to produce responses (Ackerman, 1992; 1994; Reckase, 1997). 

Bock, Gibbons and Muraki (1988; based on the work of Bock & Aitkin, 
1981) developed an approach they termed 'fuH-information item factor 
analysis' because it is based on the frequencies of aH distinct item re­
sponse vectors and not just on pairwise correlations. The approach employs 
a probit link, and produces item parameter estimates by maximizing the 
marginal likelihood. The approach has been implemented using an EM al­
gorithm in the software package TESTFACT (Wilson, Wood & Gibbons, 
1984). Because fuH information item factor analysis becomes numericaHy 
quite cumbersome when multiple integrals (one for each dimension) need 
to be evaluated, McDonald (1997) has developed an approximation based 
on a polynomial expansion of the normal-ogive cdf that is often used as an 
alternative, and that is implemented in the program NOHARM (Fraser & 
McDonald, 1986). 

Considerable effort has been devoted to the development and interpre­
tation of MIRMs since the late 1980s. A primary focus has been on the 
consequences of applying unidimensional models in situations where the 
real or simulated data structure is in fact multi dimensional (Embretson, 
1991; Folk & Green, 1989; Kupermintz, Ennis, Hamilton, Talbert, & Snow, 
1995; Luecht & Miller, 1992; Walker & Beretvas, 2000). Additional work 
has also been done to extend the model to the multidimensional analysis of 
polytomous items (Adams, Wilson & Wang, 1997; Kelderman, 1997; Kel­
derman & Rijkes, 1994; Muraki & Carlson, 1995; Wang, Wilson & Adams, 
1997). 

In what foHows, we first present multidimensional extensions of both 
the Rasch model and the LLTM. Though the conceptual underpinning for 
multidimensionality is somewhat different for the two models, the two ex­
tensions are equivalent within a generalized linear model framework. Next, 
latent item predictors are introduced. As we will explain, a discrimination 
or slope parameter of an item in classical item response models (Birnbaum, 
1968; McKinley, 1989; McKinley & Reckase, 1983) corresponds to the un­
known value of an item predictor. Hence, we describe the discrimination 
parameter as a latent item predictor. The combination of multi dimension­
ality and latent item predictors results in the fuH-information item factor 
analysis model developed by Bock et al. (1988), in our case with a logit in­
stead of a probit link function. We illustrate the use of multiple dimensions 
and latent item predictors with the verbal aggression data. 
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8.2 Multiple person dimensions 

8.2.1 Multidimensional extension of the Rasch model 

Adopting the GLMM framework outlined in Chapter 1, the Rasch model is 
a mixed logistic regression model that incorporates for each item an item 
indicator Xi with fixed weight ßi , i = 1, ... , I (see Chapter 2). For each 
person there is an associated weight (}p for the constant Zo that is random 
over persons, (}p rv N(O, (}~). The random weight conceptually represents 
a single latent variable. In vector notation (throughout the chapter, all 
vectors are defined to be column vectors), the logit of the probability 7fp i 

that a person p gives al-response to item i is 

(8.1) 

According to the Rasch model, all dependencies between the responses of 
a participant are accounted for by the latent variable (random effect) (}p, 

Viewed from the item side, the characterization of the latent person space 
in terms of a single unidimensionallatent variable means that all items are 
located on the same scale, operationalizing the same construct. However, 
a test often consists of several subscales measuring different, but poten­
tially related constructs. Alternatively, one single item of a test might be 
measuring more than one construct. In both cases, the assumption of the 
Rasch model of one underlying unidimensional latent variable may be too 
restrictive. Extending the Rasch model with the single latent variable (ran­
dom weight) (}p to an R-dimensional vector Op of latent variables (random 
weights), one for each construct the test is measuring, the logit of the con­
ditional probability of success becomes 

(8.2) 

where the vector Xi now specifies to which extent item i is measuring 
each of the R dimensions. We assume that the random weights Op have a 
multivariate normal distribution with mean 0 and covariance matrix :E. 

In a between-item multidimensional model (Adams et al. , 1997), each 
item is a measurement of only one dimension. That is, Xi contains only 
one nonzero element, indicating the dimension to which the item belongs. 
When a Rasch model is assumed for each subscale, the nonzero element of 
Xi equals one for all i, and the fixed weight ßi corresponds to the location 
of item i on the dimension to which it belongs. The advantages of using 
the between-item multidimensional model instead of analyzing the different 
scales separately with a Rasch model is that the test structure is explicitly 
taken into account, so that estimates for the correlation between the latent 
dimensions are provided by estimating the covariance matrix :E of the latent 
variables, and so that more accurate parameter estimates are obtained by 
relying on the correlation between the dimensions (Adams et al., 1997). 



250 Frank Rijmen, Derek Briggs 

In a within-item multidimensional model (Adams et al. , 1997), an item 
can be an indicator of more than one dimension. Hence, the vector Xi will 
contain more than one nonzero element. In the latter case, the fixed weight 
ßi can be thought of as a weighted sum of the locations of item i on the R 
dimensions. While this decomposition can be useful conceptually, a model 
formulated in terms of the individual item locations on the dimensions is 
in general not identified without imposing further restrictions (see Adams 
et al. , 1997, for conditions on identifiability). 

A graphical representation of the multidimensional extension of the Rasch 
model is given in Figure 8.1. Note that there is an item predictor for each 
dimension (indicating the items that belong to the dimension) and also one 
for each item, K = R+I. It is assumed that ßi = 0 if k :::; R. The logit link 
that connects 7r pi to 'f]pi, and the random component that connects 7r pi to 
Ypi are omitted, here, and also in the following figures. 

FIGURE 8.1. Graphical representation of the multidimensional extension of the 
Rasch model. 

8.2.2 Multidimensional extension of the LLTM 

In this section, an alternative rationale for multiple person dimensions is 
presented. The starting point this time is the LLTM (Fischer, 1973), a 
model in which the item parameters are regressed on item properties. As 
explained in Chapter 2, the LLTM can be conceived of as a logistic re­
gression model with a constant that has a random weight over persons, 
and with item properties that have fixed weights. Hence, the logit of the 
conditional prob ability of success is 

(8.3) 

where ß is the vector which consists of the K fixed weights. The vector Xi 
maps item i onto its respective item properties. 

Since only the constant has a random weight, the difference between 
the logits of the probabilities of success for each pair of participants is 
constant across items. That is, only person main effects and item property 
main effects are taken into account by the LLTM, respectively through the 
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person specific weight of the constant ep , and the fixed regression weights 
of the item properties. It is assumed that there are no interactions between 
item properties and persons. In many situations however, one can expect 
such interactions, and hence individual differences would be expected in 
the regression weights of the item properties. For example, consider the 
cognitive task of solving a linear equation. Completing this task requires 
two distinct cognitive operations: (a) identifying the variable to be solved, 
and (b) carrying out algebraic manipulations. It is likely, and often a central 
issue, that individual differences exist in the degree to which such cognitive 
operations are mastered. The latter can be accounted for by allowing for 
person-specific regression weights for (some of) the item properties, leading 
to the random-weights linear logistic test model (RW-LLTM, Rijmen & De 
Boeck, 2002): 

(8.4) 

where X ri and Xfi are the vectors that contain the values of item i on the 
item properties with random and fixed weights, respectively. Throughout 
the volume, we adopt the convention of defining random weights as the 
person specific deviations from the mean effect, which is included as a 
fixed weight, so that X ri will generally be a subvector of Xfi (R ::::; K). 
In terms of the framework of GLMMs, the RW-LLTM is a mixed logistic 
regression model with random slopes in addition to a random intercept. A 
graphical representation of the RW-LLTM is given in Figure 8.2 . 

........ ······· .. · .... ····· ...... ß,Xi1, ... ~ 
/' e e'\ ....... ------' pO, ... , pR i 

('l]Pi ..... )---- ...................................... .... 

'\'" .... / 

FIGURE 8.2. Graphical representation of the RW-LLTM. 

8.2.3 Multidimensionality: two 01 a kind? 

The two rationales we have discussed for arriving at a multi dimensional 
model are, at a first sight, conceptually unrelated. However, both ap­
proaches lead to similar models, and are easily translated into each other. 
The RW-LLTM is a within-item multidimensional model with a decompo­
sition of the fixed weights of the item indicators in terms of item properties. 
The random weight of the constant represents a dimension that is measured 
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by all items to the same degree. Vice versa, each dimension of a test can 
be considered to define an item property with a random weight. 

8.2.4 Application of a between-item multidimensional 
model 

As an application of a multidimensional model, the verbal aggression data 
were analyzed with a between-item two-dimensional model. In the study, 
described in Chapter 1, respondents were presented a frustrating situation 
and asked whether they would want to react in a verbally aggressive manner 
(want-items), or whether they actually would react in a verbally aggressive 
manner (do-items). We hypothesized that the want-items and do-items 
represented two separate dimensions in a between-item model. The model 
was estimated with the procedure NLMIXED from SAS. A description of 
the program syntax is given in Section 8.5.1. 

The deviance of the resulting model was 7980. The estimates and stan­
dard errors of the item parameters are given in Table 8.1. Within each 
dimension, the items are ordered from easiest (most likely to exhibit the 
response) to most difficult (least likely to exhibit the response). The results 
indicate that cursing was the most likely behavior and shouting the least 
likely, and that wanting was more likely than doing (for the average person, 
()pl = ()p2 = 0). 

The estimates of the standard deviations for the dimensions correspond­
ing to the want-items and do-items were 1.45 and 1.68 respectively, with 
SEs of .09 and .10. The estimated correlation between the two dimensions 
was .78 with a SE of .04. Hence, the two constructs of the questionnaire 
were highly correlated: respondents who wanted to react in a verbally ag­
gressive way also tended to behave that way. 

To test whether the two-dimensional model provides a better fit than the 
unidimensional Rasch model, a LR test can be used since the Rasch model 
is nested within the two-dimensional model. The latter becomes clear if we 
reparametrize the two-dimensional model as follows: 

Xtl = Wanti + DOi = 1, and 
Xt2 = Doi , 

where Want and Do are the item properties with random weights cod­
ing for the want-items (Want = 1, Do = 0) and the do-items (Want = 
0, Do = 1), respectively. That is, in the reparametrized model, the first 
predictor with a random weight is the constant, and the second predictor 
with a random weight is the item property denoting whether or not an 
item is a do-item. If the variance of the latter is zero, the Rasch model 
is obtained. Hence, testing the Rasch model (null hypothesis) versus the 
between-item two-dimensional model (alternative hypothesis) comes down 
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to testing for one versus two random weights. In this case, the asymptotic 
null distribution of the LR test-statistic is a mixture with equal weights of 
.5 of two chi-squared distributions, respectively with df = 2 and df = 1 
(Verbeke & Molenberghs, 1997; see also Chapter 4). The LR test statistic 
amounted to 8072 -7980 = 92, p < .001, so that one may conclude that the 
two-dimensional model has a better goodness of fit than the Rasch model. 
Nevertheless, the estimates for the item parameters were very similar un­
der both models, with a correlation of .99, and the correlation between the 
dimensions is very high, as mentioned earlier. The estimates of the item 
parameters for the Rasch model are also given in Table 8.1. Comparing the 
estimates of the item parameters for both models, it is notable that the esti­
mates for the two-dimensional model are slightly expanded, in comparison 
with the estimates for the Rasch model. 

TABLE 8.1. Estimates and standard errors of the item parameters for the be-
tween-item two-dimensional model and the Rasch model (verbal aggression data). 

2-dim Rasch 

Situation Behavior Type Behavior Mode ßi SE(ß;) ßi SE(ßi) 

Train Curse Want -1.79 .18 -1.75 .18 
Bus Curse Want -1.25 .17 -1.22 .16 
CaU Curse Want -1.11 .16 -1.08 .16 
Train Scold Want -.73 .16 -.71 .16 
Bus Scold Want -.58 .16 -.56 .15 
Store Curse Want -.55 .16 -.53 .15 
Bus Shout Want -.09 .16 -.08 .15 
Train Shout Want -.02 .16 -.01 .15 
CaU Scold Want .35 .16 .35 .15 
Store Scold Want .70 .16 .69 .16 
CaU Shout Want 1.06 .16 1.04 .16 
Store Shout Want 1.56 .18 1.53 .17 
Bus Curse Do -1.32 .18 -1.22 .16 
Train Curse Do -.94 .17 -.87 .16 
CaU Curse Do -.75 .17 -.71 .16 
Bus Scold Do -.40 .17 -.39 .15 
Train Scold Do .09 .17 .06 .15 
Store Curse Do .25 .17 .21 .15 
CaU Scold Do .44 .17 .38 .15 
Bus Shout Do .97 .17 .87 .16 
Train Shout Do 1.62 .18 1.48 .17 
Store Scold Do 1.65 .19 1.50 .17 
CaU Shout Do 2.17 .20 2.00 .18 
Store Shout Do 3.21 .25 2.98 .23 
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8.3 Latent item predictors 

8.3.1 The 2PL and its multidimensional extension 

The second extension to be discussed in this chapter is the introduction of 
latent item predictors. Again, the starting point is the Rasch model (Equa­
tion 8.1). As explained several times throughout this volume, it is assumed 
in the Rasch model that there is a person-specific weight (i.e., latent vari­
able) associated with the constant. The extension consists of dropping the 
assumption that we know the value of this constant predictor for all items. 
The constant, which can be conceived of as an item predictor (Xo) or a 
person predictor (Zo), now becomes a latent or unknown item predictor 
whose values are additional parameters to be estimated from the data. 
This extension to the Rasch model is known as the 2PL model (Birnbaum, 
1968): 

(8.5) 

In the psychometrie literature, OOi is called the discrimination parameter of 
the item. The larger the discrimination or slope parameter, the steeper the 
item response function. In Figure 8.3, the curve is plotted for discrimination 
parameters of 1,2 and 3, and a value of 1 for ßi/OOi' ßdOOi is the value of ()p 

for which the prob ability of success equals .5. For the Rasch model, OOi = 1 
for all i, so that ßdOOi = ßi . 
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FIGURE 8.3. Item characteristic curves for three different discrimination para­
meters (one, two, and three) and CY.i / ßi = 1. 

Apart from fixing the mean of ()p to zero (as has been done throughout 
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this volume), an additional constraint is needed to render the 2PL model 
identifiable, since one can multiply all ai with a constant, and divide ()p by 
the same value. One possible constraint, the one used in our application, is 
to fix the variance of ()p to one (or to another value). Note however that a 
different constraint is implicitly used in the Rasch model: Strictly speaking, 
the Rasch model is a 2PL model for which all discrimination parameters 
are equal, but not necessarily equal to one. In the Rasch model the variance 
of ()p is not fixed, but instead the (geometrie) mean of the discrimination 
parameters is set to one. All discrimination parameters being equal, the 
constraint results in ai = 1 for all i, and the common formulation of the 
Rasch model is obtained. 

For multidimensional models, latent item predictors can be introduced 
in much the same way. In Equation 8.2, the elements of the vector Xi are 
now estimated instead of known apriori. To distinguish between the known 
values of an item on manifest item predictors with random weights and the 
unknown (to be estimated) values of an item on latent item predictors with 
random weights, we refer to the latter by (li. Hence, 

(8.6) 

One can distinguish between an exploratory model in which all the ele­
ments of the vectors (li are estimated (McKinley & Reckase, 1983), and a 
confirmatory model in which part of the elements are estimated, and part 
are fixed to zero (McKinley, 1989). As an example of the latter, consider a 
situation where it is known apriori for each item which single dimension 
it is measuring (thus we are considering between-item multidimensionality 
only), but its discriminative power is unknown. 

For an exploratory multi dimensional model, additional identification re­
strictions are needed, due to the possibilities of rotation with respect to 
the dimensions. This can be solved by fixing the correlations between the 
dimensions, andjor by putting some constraints on the latent item predic­
tors. Alternatively, one can rotate the solution according to some criterion, 
such as varimax or oblimin. For a confirmatory model, the identification 
restrictions depend on the specific model that is considered. For example, 
in a between-item multidimensional model, the constraints are zero load­
ings on the dimensions other than the one the item belongs to (and if as 
are used that the variance has a fixed value). An advantage of consider­
ing a between-item multidimensional 2PL model is that the items can be 
located on the dimension they are measuring, since each item measures 
only one dimension. Dimension-specific item locations cannot be computed 
for a within-item multidimensional 2PL model, because a model for which 
ßi is decomposed as a weighted sum of contributions from the separate 
dimensions is in general not identified. 

In Figure 8.4, the item characteristic curves are presented for a two­
dimensional model for (li equal to (0,2)', (1,0)', and (1,2)'. ßi is equal 
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to zero. The value of element r of ai indicates to what extent item i is 
discriminating along dimension r. 

npl npl 

0.5 0.5 

0 0 
5 5 

5 5 
0p2 00 

-5 -5 -5 -5 
pI -5 -5 

a b c 

FIGURE 8.4. Item characteristic curves for three sets of discrimination para­
meters for a two-dimensional 2PL model: (a) ai = (0,2)', (b) ai = (1,0)" (c) 
ai = (1,2)', with ßi always equal to zero. 

The extension towards the inclusion of latent item predictors relates item 
response modeling to classical factor analysis. As we pointed out in Section 
8.1, an item response model equivalent to the multidimensional2PL model 
but with a probit instead of a logit link has been called full-information item 
factor analysis (Bock et al. , 1988). Similar to factor loadings in classical 
factor analysis, the elements of ai specify the extent to which item i is 
measuring each of the underlying dimensions or factors (it is the maximum 
extent when the prob ability scale, rather than logit scale is used). The air'S 

are sometimes called item loadings. However, in contrast with the factor 
loadings in classical factor analysis with orthogonal factors, they are not 
the correlation between the item and the dimensions. This becomes clear 
considering the fact that the air can be larger than one, even for orthogonal 
dimensions, whereas correlations are bounded between minus one and one. 

A graphical representation of the 2PL model is given in Figure 8.5. For 
multidimensional models with latent item predictors, the graphical repre­
sentation is the same, except that ()p and ai are vectors in this case . 
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FIGURE 8.5. Graphical representation of the 2PL modeL 
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8.3.2 Application of a multidimensional 2PL model 

A confirmatory two-dimensional 2PL model is presented as an illustration. 
The confirmatory aspect of the model consisted of constraining the want­
items and do-items to each measure a single dimension, as in the application 
discussed in Section 8.2.4. For the want-items, the values of the first latent 
item predictor with random weights were fixed at zero, and the values of a 
second latent item predictor with random weights were estimated. For the 
do-items, the values of the first latent item predictor were estimated, and 
the values of the second latent item predictor were fixed at zero. Hence, 
a model quite similar to the application discussed in Section 8.2.4 was 
estimated. The difference is that now the discrimination parameters of the 
items on their respective dimensions were also estimated, instead of being 
set to one. 

TABLE 8.2. Estimates and standard errors of the fixed weights, discrimination 
parameters, and item locations for the confirmatory two-dimensional 2PL model 
(verbal aggression data). 

Situation Behavior Behavior ßi SE(ßi) ail Qi2 SE(ai) 
Type Mode 

Call Curse Want -1.06 .17 1.29 .22 
Bus Curse Want -1.45 .23 1.92 .32 
Train Curse Want -1.05 .15 2.01 .36 
Store Curse Want -.51 .15 1.20 .20 
Train Seold Want -.48 .11 2.23 .36 
Bus Seold Want -.37 .10 2.06 .33 
Bus Shout Want -.05 .08 1.39 .22 
Train Shout Want -.03 .15 1.30 .21 
Call Seold Want .35 .16 1.61 .25 
Store Seold Want .70 .17 1.57 .25 
Call Shout Want .93 .15 1.01 .18 
Store Shout Want 1.33 .16 .91 .18 
Call Curse Do -.76 .17 1.64 .25 
Bus Curse Do -.75 .12 2.09 .33 
Train Curse Do -.51 .10 1.92 .30 
Bus Seold Do -.29 .12 2.81 .46 
Train Seold Do .07 .20 2.37 .37 
Store Curse Do .20 .14 1.22 .20 
Call Seold Do .42 .17 1.77 .27 
Bus Shout Do .44 .08 1.47 .23 
Train Shout Do 1.59 .22 1.66 .28 
Store Seold Do 1.53 .20 1.48 .25 
Call Shout Do 1.89 .21 1.21 .23 
Store Shout Do 2.81 .30 1.20 .26 

The model was identified by constraining the means of the two dimen­
sions to zero, and constraining their variances to one. The procedure NL­
MIXED from SAS was used to estimate the model. A description of the 
program syntax is given in Section 8.5.2. 

The deviance of the estimated model amounted to 7930. The item para­
meter estimates are given in Table 8.2. Within each dimension, the items 
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are ordered based on ßdai, the value on the B-scale where a I-response on 
the item has a prob ability of .50. The estimate of the correlation between 
the two dimensions was .77, with a standard error of .04. 

Since the between-item two-dimensional model without latent item pre­
dictors (discrimination parameters) is nested within the between-item two­
dimensional model with latent item predictors, a likelihood-ratio test can 
be used to assess whether latent item predictors should be included. The 
likelihood ratio statistic amounted to 7980 - 7930 = 50, df = 22,p < .001. 
Hence, the model without latent item predictors has poorer goodness of 
fit to a statistically significant extent. However, the consequences for the 
parameter estimates may not be large. 

The estimates ßi are very similar to the estimates of ßd ai for the model 
with latent item predictors. The correlation amounted to .98. The correla­
tion between the two dimensions was also quite similar under both models: 
.77 for the model with latent item predictors, and .78 for the model with­
out latent item predictors. At least for some purposes it does not seem 
to matter much which model is used, but of course, if one is interested in 
variation in item discrimination parameters, then it does matter. 

8.4 Concluding remarks 

A psychological test often measures, and is intended to measure, more than 
one underlying construct. In order to analyze such data properly, MIRMs 
are called for. Analogous to exploratory factor analysis for continuous re­
sponses, MIRMs with latent item predictors can be used to explore the 
structure of a test. In the case where one is willing to make assumptions 
regarding the construct(s) an item is measuring, but not regarding to which 
extent, a confirmatory MIRM with latent item predictors may be appro­
priate. At the other extreme is a test for which one has knowledge of the 
relevant item properties (e.g., cognitive processes involved in solving an 
item). In the latter case, a RW-LLTM, the multidimensional analogon of 
the LLTM, is the model to be chosen. 

A drawback of multidimensional models is that the computation time 
increases exponentially with the number of dimensions. For example, in a 
three-dimensional model and with 20 nodes per dimension, the integrals 
over the random effects are approximated by a summation over 203 = 8000 
points. Fortunately, in the context of MIRMs with latent item predictors, 
Bock et al. (1988) found that the number of no des per dimension can be re­
duced with increasing dimensionality without impairing the accuracy of the 
approximations. It is a point of scientific research to see whether the same 
result holds for MIRMs in general. Another possibility is to use a Monte 
Carlo approach (Adams et al., 1997) to approximate the multidimensional 
integrals. 
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In this ehapter, we have presented latent item predictors as predictors 
with random weights. In a similar way, it is possible to introduee latent 
item predietors with fixed weights. The model with internal rest riet ions on 
item diffieulty (Butter, De Boeek, & Verhelst, 1998), diseussed in Chapter 
9, is an example of the latter. 
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8.5 Software 

The NLMIXED procedure of SAS V8 was used for both applications dis­
cussed in this chapter. The syntax code and comments are given in what 
follows. 

To speed up the estimation, we opted for nonadaptive instead of adap­
tive Gaussian quadrat ure to approximate the two-dimensional integral. We 
specified 20 nodes per dimension, hence 20 x 20 = 400 nodes in total. 

8.5.1 Between-item two-dimensional model without latent 
item predictors (verbal aggression data) 

The adaptive Gaussian quadrat ure with the number of nodes to be de­
termined by the NLMIXED procedure did not converge after several days 
on a pe with a Pentium III processor and 250 Mb RAM. Nonadaptive 
Gaussian quadrat ure was used instead. Newton-Raphson was specified for 
the optimization technique. 

Code 

PROC NLMIXED data=aggression_dich method=gauss 
technique=newrap noad qpoints=20; 
PARMS bl-b24=0 sd_w=l co_wd=O sd_d=l; 
theta=theta_w*want+theta_d*do; 
beta=bl*xl+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+bl0*xl0+bll*xll+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
+b21*x21+b22*x22+b23*x23+b24*x24; 
ex=exp(theta-beta); 
p=ex/(l+ex); 
MODEL y ~ binary(p); 
RANDOM theta_w theta_d ~ normal( [0,0] , [sd_w**2, co_wd, sd_d**2]) 
subject=person; 
ESTIMATE 'var_w' sd_w**2; 
ESTIMATE 'var_d' sd_d**2; 
ESTIMATE 'cor' co_wd/(sd_w*sd_d); 
RUN; 

Comments 

1. The starting value was zero for the fixed weights and for the covariance 
between the random weights, and one for the standard deviations of the 
random weights. 
2. want and do are the item predictors with random weights co ding for the 
behavior mode (want=l and do=O for want-items, and want=O and do=l 
for do-items). The random effects are theta_wand theta_do. 
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3. The ESTIMATE statement was used to obtain estimates and standard er­
rors for the variances of the random weights, and their intercorrelation. 

8.5.2 Confirmatory two-dimensional 2PLM (verbal 
aggression data) 

Since the Newton-Raphson optimization technique did not converge prop­
erly, the quasi-Newton optimization technique was used (the default op­
tion). 

Code 

PROC NLMIXED data=aggression_dich method=gauss 
noad qpoints=20; 
PARMS b1-b24=O a1-a24=1 co_wd=O; 
theta=(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6 
+a7*x7+a8*x8+a9*x9+a10*x10+a11*x11+a12*it12)*theta_w 
+ (a13*x13+a14*x14+a15*x15+a16*x16+a17*x17+a18*x18 
+a19*x19+a20*x20+a21*x21+a22*x22+a23*x23+ a24*x24)*theta_d; 
beta=b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7 
+b8*x8+b9*x9+b10*x10+b11*x11+b12*x12+b13*x13+b14*x14 
+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20 
+b21*x21+b22*x22+b23*x23+b24*x24; 
ex=exp(theta-beta); 
p=ex/(1+ex); 
MODEL y rv binary(p); 
RANDOM theta_w theta_d normal([O,O], [1,co_wd,1]) subject=pp; 
ESTIMATE 'b1/a1' b1/a1; 
ESTIMATE 'b2/a2' b2/a2; 
ESTIMATE 'b3/a3' b3/a3; 
ESTIMATE 'b4/a4' b4/a4; 
ESTIMATE 'b5/a5' b5/a5; 
ESTIMATE 'b6/a6' b6/a6; 
ESTIMATE 'b7/a7' b7/a7; 
ESTIMATE 'b8/a8' b8/a8; 
ESTIMATE 'b9/a9' b9/a9; 
ESTIMATE 'b10/a10' b10/a10; 
ESTIMATE 'b11/a11 ' b11/a11; 
ESTIMATE 'b12/a12' b12/a12; 
ESTIMATE 'b13/a13' b13/a13; 
ESTIMATE 'b14/a14' b14/a14; 
ESTIMATE 'b15/a15' b15/a15; 
ESTIMATE 'b16/a16' b16/a16; 
ESTIMATE 'b17/a17' b17/a17; 
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ESTIMATE 'b18/a18' b18/a18; 
ESTIMATE 'b19/a19' b19/a19; 
ESTIMATE 'b20/a20' b20/a20; 
ESTIMATE 'b21/a2l ' b21/a2l ; 
ESTIMATE 'b22/a22' b22/a22; 
ESTIMATE 'b23/a23' b23/a23; 
ESTIMATE 'b24/a24, b24/a24; 
RUN; 

Comments 

1. The starting value was zero for the fixed weights of the item indicators 
and the correlation between the random effects, and one for the discrimi­
nation parameters. 
2. The order of the items in the data set is such that the first 12 items are 
want-items, and the second 12 do-items. Hence, the terms for the second 
12 items can be omitted for the want-dimension (theta_lN), and the terms 
for the first 12 items can be omitted for the do-dimension (theta_d). 
3. The ESTIMATE statement was used to obtain estimates and standard 
errors for the point where the probability of aI-response is equal to .5. 

8.6 Exercises 

1. Explain why a within-item two-dimensional model of the form 'f)pi 

Bil + Bi2 - ßi does not make sense. 

2.(a) The value ßdai indicates the value of Bp that is required to obtain a 
probability of .50 for the I-response (and the O-response). How would you 
give meaning to the value of ßi? 
(b) Suppose you want to estimate ßd ai directly, without an ESTIMATE 
statement, how would you proceed? 

3. Using the verbal aggression data, estimate a within-item two-dimensional 
model without latent item predictors, with the first dimension common to 
all items, and a second dimension for the do-items only. 

4. Compare the results for the model of Exercise 3 with the results of 
the between-item two-dimensional model without latent item predictors 
discussed in Section 8.2.4. 

5. Using the example data, estimate a RW-LLTM with the same item pre­
dictors as in the LLTM presented in Chapter 2, but with the weight of 
Other-to-blame vs Self-to-blame being random. Compare the results with 
the results for the LLTM. Is a random weight for Other-to-blame vs Self-
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to-blame needed? 

8.7 References 

Ackerman, T. (1992). A didactic explanation of item bias, item impact, 
and item validity from a multidimensional perspective. Journal of Edu­
cational Measurement, 29, 67-9I. 

Ackerman, T. (1994). Using multidimensional item response theory to un­
derstand what items and tests are measuring. Applied Measurement in 
Education, 7, 255-278. 

Adams, RJ., Wilson, M., & Wang, W.-C. (1997). The multidimensional 
random coefficients multinomiallogit model. Applied Psychological Mea­
surement, 21, 1-23. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring 
an examinee's ability. In F.M. Lord & M.R Novick (Eds). Statistical 
Theories of Mental Test Scores (pp. 397-479). Reading, MA: Addison­
Wesley. 

Bock, RD., & Aitkin, M. (1981). Marginal maximum likelihood estimation 
of item parameters: An application of an EM-algorithm. Psychometrika, 
46, 443-459. 

Bock, RD., Gibbons, R, & Muraki, E. (1988). Full-information item factor 
analysis. Applied Psychological Measurement, 12, 261-280. 

Butter, R, De Boeck, P., & Verhelst, N. (1998). An item response model 
with internal restrictions on item difficulty. Psychometrika, 63, 47-63. 

Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psy­
chometrika, 40, 5-22. 

Embretson, S.E. (1991). A multidimensionallatent trait model for measur­
ing learning and change. Psychometrika, 56, 495-515. 

Fischer, G.H. (1973). Linear logistic test model as an instrument in educa­
tional research. Acta Psychologica, 37, 359-374. 

Folk, V.G., & Green, B.F. (1989). Adaptive estimation when the unidimen­
sionality assumption of IRT is violated. Applied Psychological Measure­
ment, 13, 373-389. 

Fraser, C., & McDonald, R (1986). NOHARM 11: A FORTRAN program 
for fitting unidimensional and multidimensional normal ogive models of 
latent trait theory. Armidale, NSW, Australia: University of New Eng­
land. 

Kelderman, H. (1997). Loglinear multidimensional item response models 
for polytomously scored items. In W. van der Linden & R Hambleton 
(Eds) , Handbook of Modern 1tem Response Theory (pp. 287-304). New 
York: Springer. 



264 Frank Rijmen, Derek Briggs 

Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT 
models for polytomously scored items. Psychometrika, 59, 149-176. 

Knol, D. & Berger, M. (1991). Empirical comparison between factor analy­
sis and multidimensional item response models. Multivariate Behavioral 
Research, 26, 457-477. 

Kupermintz, H., Ennis, M.M., Hamilton, L.S., Talbert, J.E., & Snow, RE. 
(1995). Enhancing the validity and usefulness of large-scale educational 
assessments.1. Nels-88 Mathematics Achievement. American Educational 
Research Journal, 32, 525-554. 

Luecht, RM., & Miller, R (1992). Unidimensional calibrations and inter­
pretations of composite traits for multidimensional tests. Applied Psy­
chological Measurement, 16, 279-293. 

McDonald, RP. (1967). Nonlinear factor analysis. Psychometrie Mono­
graphs, No. 15. 

McDonald, RP. (1997). Normal-ogive multidimensional model. In W.J. van 
der Linden & RK. Hambleton (Eds). Handbook of Modern Item Response 
Theory (pp.257-269). New York: Springer. 

McKinley, RL. (1989). Confirmatory analysis oftest structure using multi­
dimensional item response theory. Research Report No. RR-89-31, Prince­
ton, NJ: ETS. 

McKinley, RL., & Reckase, M.D. (1983). MAXLOG: A computer program 
for the estimation of the parameters of a multidimensionallogistic model. 
Behavior Research Methods and Instrumentation, 15, 389-390. 

Muraki, E. & Carlson, J.E. (1995). Full-information factor analysis for poly­
tomous item responses. Applied Psychological Measurement, 19, 73-90. 

Muthen, B.O. (1978). Contributions to factor analysis of dichotomous vari­
ables. Psychometrika, 43, 551-560. 

Reckase, M.D. (1997). A linear logistic multidimensional model for dichoto­
mous item response data. In W. van der Linden & R Hambleton (Eds), 
Handbook of Modern Item Response Theory (pp. 271-286). New York: 
Springer. 

Rijmen, F., & De Boeck, P. (2002). The random weights linear logistic test 
model. Applied Psychological Measurement, 26, 269-283. 

Verbeke, G., & Molenberghs, G. (1997). Linear Mixed Models in Practice: 
A SAS-Oriented Approach. New York: Springer. 

Walker, C.M., & Beretvas, S.N. (2000). Using multidimensional versus uni­
dimensional ability estimates to determine student proficiency in math­
ematics. Paper presented at the 2000 Annual Meeting of the American 
Educational Research Association, New Orleans, LA. 

Wang, W.-C., Wilson, M., & Adams, RJ. (1997). Rasch models for multidi­
mensionality between items and within items. In M. Wilson, K. Draney, 
& G. Eglehard (Eds) , Objective Measurement (Vol. 4,). Norwood, NY: 



8. Multiple person dimensions and latent item predictors 265 

Ablex. 

Wilson, D., Wood, R. & Gibbons, R. (1984). TESTFACT. Test Scoring, 
[tem Statistics and [tem Factor Analysis [Computer software and man­
ual). Mooreville, IN: Scientific Software. 



Chapter 9 

Latent item predictors with 
fixed effects 

Dirk J. M. Smits 
Stephen Moore 

9.1 Introduction 

The Rasch model (Rasch, 1960) and the linear logistic test model (LLTM, 
Fischer, 1973, 1977) are two commonly used item response models. Both 
models are discussed in Chapter 2. The Rasch model assumes item indica­
tors as predictors, so that each item has a specific effect, the weight of the 
corresponding item indicator. The LLTM explains these effects in terms of 
item properties, or in other words item properties are used as item predic­
tors. Therefore, the LLTM may be considered an item explanatory model, 
in contrast with the Rasch model which is descriptive. 

The requirement that the values of the item properties be known in 
advance for every item is both a strength and a limitation of the LLTM. 
The strength is that the model supports a more parsimonious account of 
item effects, but the limitation is that the values specified for items on the 
properties imply additional model assumptions. In the current chapter, a 
model will be introduced with latent item properties: The values of these 
latent item properties do not have to be known apriori, but they may 
have unknown values that are estimated as model parameters. The model 
introduced in this chapter is called the model with internal restrietion on 
item difficulties (MIRID; Butter, De Boeck, & Verhelst, 1998). 

The MIRID was originally published by Butter et al. (1998), based on 
Butter (1994). In Butter et al. (1998), a conditional maximum likelihood 
formulation and estimation method was explained, and the results of a 
simulation study were presented. An application of the MIRID and an ex­
tension of the MIRID to the OPLM-MIRID (originally described by Butter, 
1994) and the 2PL-MIRID can be found in Smits and De Boeck (2003). 
A comparison between two estimation methods for the MIRID and the 
OPLM-MIRID - a conditional maximum likelihood estimation (Smits, De 
Boeck, Verhelst, & Butter, 2001) and a marginal maximum likelihood es­
timation, implemented within PROC NLMIXED - can be found in Smits, 
De Boeck, and Verhelst (2003). 

The MIRID in its standard form will be explained in the first part of 
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the chapter. In the standard form, the weights of the latent item predictors 
are assumed to be fixed. In the second part of the chapter, an extension 
of the MIRlD will be explained in which the weights of some of the latent 
item predictors are randomly distributed over persons instead of being 
fixed. This extension is called the random-weights MIRID (RW-MIRlD). 
The RW-MIRlD paralIeIs the RW-LLTM as an extension of the LLTM 
(see Chapter 8 for this extension). The graphical representation used in 
Chapters 1 and 2 and in some other chapters to represent models will not 
be used here, because the relationship between the items is a complication. 

The MIRlD assumes a specific relationship among items that the LLTM 
does not assume. To understand this relationship among items, it is useful 
to compare the MIRlD to the LLTM. In the LLTM, every item reflects 
or embodies several item properties to some known degree. These item 
properties are postulated to explain the item effects. In the MIRID, there 
are two different types of items: component items, and composite items. 

The effect of the composite items is explained on the basis of the effect 
of component items. The component items are organized in types (compo­
nents), so that each composite item is associated with one component item 
from each type. The effects of the component items per type constitute a 
latent predictor for the composite items. The effects of component items 
function in the MIRlD just as item properties function in the LLTM. For 
example, Smits and De Boeck (2003), used a questionnaire to test a theory 
on the components of situational guilt feelings. The data were from 268 per­
sons, 130 males and 138 females between the ages of 17 and 19. Situational 
guilt feelings were assumed to depend on three latent factors: (1) whether 
one feels that one has violated amoral, ethic, religious, or personal code 
in the situation (Norm Violation), (2) whether one worries about what one 
did or failed to do in the situation (Worrying), and (3) whether one wants 
to rectify what one did or failed to do in the situation (Tendency to Rec­
tify). The questionnaire contains 10 hypothetical situations (see Section 
9.9), and the participants were asked to respond to four questions per sit­
uation: a question on each ofthe three aspects (components), and a fourth 
question about feeling guilty in the situation. The first three questions 
are component items and the fourth is a composite item. Since these four 
quest ions are repeated for each situation, there are 30 component items and 
10 composite items. The effects of the 10 norm violation items define the 
first latent predictor, the effects of the 10 items about worrying define the 
second latent predictor, and the effects of the 10 items about wanting to 
rectify define the third latent predictor. The effect of the composite items 
is assumed to be a linear function of the effects of the corresponding three 
component items. 

In general, the relations among all items can be expressed in a rela­
tionship matrix of items by component items (see Figure 9.1). The matrix 
indicates which component items (columns) are related to each of the items 
(rows). Note that this matrix relates items, and thus may not be considered 
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Component 1 Component 2 Component 3 
Norm Violation Worrying T. Rectify 
item 1 item 5 item 2 item 6 item3 item 7 

It. farn. 1 item 1 1 0 0 0 0 0 
item 2 0 0 1 0 0 0 
item 3 0 0 0 0 1 0 
item 4 1 0 1 0 1 0 

It. farn. 2 item 5 0 1 0 0 0 0 
item 6 0 0 0 1 0 0 
item 7 0 0 0 0 0 1 
item 8 0 1 0 1 0 1 

FIGURE 9.1. Example of a relationship matrix for two item families. 

a property matrix. 
The items shown in the relationship matrix in Figure 9.1 are grouped in 

two ways: item families (sets of rows designated It. farn. 1, It. farn. 2, ... ) 
and components (sets of columns). An item family groups the composite 
item and all the component items that relate to that composite item (Le., 
for the guilt example: all component items concerning the same situation). 
In Figure 9.1, there are two item families: (1) the items 1, 2, 3, and 4 and 
(2) the items 5, 6,7, and 8. A component groups all items that embody a 
particular theoretical factor (in our case, a component or basis for guilt). 
In Figure 9.1, Component 1 groups the items 1 and 5, Component 2 groups 
the items 2 and 6, and Component 3 groups the items 3 and 7. All model 
formulations in this chapter will be based on this item family structure with 
one component item of each type per composite item. The MIRID can also 
accommodate a hierarchical family structure in which lower-order compos­
ite items in turn function as component items for higher-order composite 
items. 

The latent item predictors in MIRID are the counterparts of the item 
properties in the LLTM. As in the LLTM, standard MIRID item predic­
tors have fixed weights. In contrast to the item predictors in the LLTM, the 
values of the latent item predictors are not fixed apriori, but are the item 
parameters of the component items as will be explained in the next para­
graph. The effects of the composite items are modeled as a linear function 
of the item parameters of the corresponding component items. 

9.2 The model 

9.2.1 The systematic component 

Like most item response models including the LLTM, the MIRID has a 
fixed-effect part and a random-effect part in its systematic component (the 
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one that determines the response probabilities). To explain the formula for 
the fixed-effect part, two new indices will be used for the items: The index 
r(r = 1, ... , R) denotes the components, and the index s(s = 1, ... , S) 
denotes the item family. For each composite item, the index r will be set 
equal to R + 1. The index i(i = 1, ... ,1) denotes the item, meaning that 
each value of i corresponds with a particular combination of the indices r 
and s. The index p(p = 1, ... , P) denotes the person. 

In order to formulate the model, two matrices will be introduced: a latent 
item predictor matrix A and a componential weight matrix W. The latent 
item predictor matrix A is a matrix of item families by latent item predic­
tors. It contains the values (parameters) of the latent item predictors: the 
o;ST' Each latent item predictor corresponds to a component. See Figure 9.2 
for a latent item predictor matrix for the example as presented in Figure 
9.1. In addition, a constant predictor is added that will be used to model 
the composite item responses. In order to see that Figure 9.2 represents the 
latent item predictor matrix, we have expanded this matrix in Figure 9.3; 
however, the symbol A will furt her be used to denote the collapsed matrix 
as in Figure 9.2. 

Item family 1 
Item family 2 

Predictor 1 
Component 1 

( 
Predictor 2 

Component 2 
0;12 

0;22 

Predictor 3 
Component 3 

0;13 

0;23 

FIGURE 9.2. Example of a latent item predictor matrix A. 

Predictor 1 Predictor 2 Predictor 3 
Comp.1 Comp.2 Comp.3 

It. fam. 1 item 1 0;11 0;12 0;13 

item 2 0;11 0;12 0;13 

item 3 0;11 0;12 0;13 

composite item 4 0;11 0;12 0;13 

It. fam. 2 item 5 0;21 0;22 0;23 

item 6 0;21 0;22 0;23 

item 7 0;21 0;22 0;23 

composite item 8 0;21 0;22 0;23 

FIGURE 9.3. Expanded latent item predictor matrix. 

Const. 
Pred. 

~ ) 

Const. 
Pred. 

1 
1 
1 
1 
1 
1 
1 
1 

The second matrix is the componential weight matrix W, which is a 
matrix of item type by latent item predictors or components plus a constant 
predictor for the composite items. The item types are component item type 
1 (Component 1), component item type 2 (Component 2), etc., and the 
composite items. See Figure 9.4 for the example of eight items as presented 
in Figure 9.1 and 9.2. 
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The matrix gives the weights of the latent predictors for each of the item 
types. Component items (rows 1 to 3) have a weight of one for the corre­
sponding component, and zero otherwise. This is reftected in an identity 
matrix in the upper left part. Composite items have a weight parameter 
for each of the components and for the constant. The weights are ßl, ß2, 
ß3, and ßo, respectively. 

Comp. item type 1 
Comp. item type 2 
Comp. item type 3 
Composite item 

Comp.1 

U, 
Comp.2 

° 1 

° ß2 

Comp.3 

° ° 1 
ß3 

Const.Pred. 

~ ) 
ßo 

FIGURE 9.4. Example of a componential weight matrix W. 

The product of A and W' results in an item parameter matrix of item fam­
ilies by item types. The item parameter matrix that corresponds to Figure 
9.2 and 9.4 is shown in Figure 9.5. In this matrix, the item parameters for 
all items can be found, organized by item family. 

Component Component Component Composite 
item type 1 item type 2 item type 3 item 

It. farn. 1 CU 0012 0013 L:~=1 alrßr+ßO 

) It. farn. 2 0021 0022 0023 L:~=1 a2rßr+ßO 

FIGURE 9.5. Example of an item parameter matrix. 

The fixed-effect part of the MIRID can now be formulated as: 

(fixed-effect part )pi = ß~ = A~ W r, (9.1) 

with A~ = (a s l,"" a s R+d, and Wr the transposed row r from W. 
The products A~ W r correspond to the cells in the item parameter matrix. 

For example, A;Wl equals 0021 = (0021,0022,0023,1) X (1,0,0,0)', and A;W4 
equals 0024 = (0021,0022,0023,1) X (ßl, ß2,ß3, ßo)'. 

The fixed-effect part for the component item parameters is similar to the 
fixed-effect part of a Rasch model, as for the component items ß: = asr; see 
Equation 9.1. This implies that the values of the latent item predictors are 
also the item parameters of the corresponding component items. The fixed­
effect part for the composite items is a linear combination of the component 
item parameters asr with weights ßr: ß: = L:~=1 ßrasr+ßo· The composite 
item parameter is decomposed into the item parameters of the component 
items. In other words, the effect of a composite item is explained in terms 
of latent item predictors and their weights. 
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As can be seen in Equation 9.1, the equation for the fixed-effect part is 
not linear in its parameters, since a product of two parameters is involved. 
By consequence, the MIRID is not part of the family of generalized linear 
models, but it is a nonlinear model instead (McCulloch & Searle, 2001). 
Maris and Bechger (2003) mention that the MIRID is a member of the 
curved exponential family, which implies among other things that condi­
tional maximum likelihood estimation is possible for a and ß. Also in the 
MIRID, the sum scores are sufficient statistics for the person parameters 
(Opo). 

The random-effect part of the MIRID is the same as for the Rasch model. 
It consists of Opo, called the random intercept or person parameter. We 
assurne Opo rv N (0, O"~). The subscript 0 is used to differentiate the random 
intercept from the other types of random effects to be presented later. 

The formula for the odds of al-response according to the MIRID is 
analogous to the corresponding formula for the Rasch model or the LLTM: 

(9.2) 

with Opo rv N(O, O"~), for the component items ß~ = asr, and for the com­

posite items, ß~ = E~l ßrasr + ßo, with i as an index for the pairs (s, r). 
Equation 9.2 can be rewritten in terms of the previously used matrix 

notation as follows: 
(9.3) 

9.2.2 Identijiability 0/ the MIRID 

The well-known indeterminacy of the Rasch model has implications for the 
item parameters of the MIRID (Butter et al., 1998). If we rescale so that 
ßi = ß~ + c, then it follows that for the component items a;r = asr + c 

and for the composite items that ßi = E~l ßrasr + ßo + c and also that 

ßi = E~=l ßra;r + ßü, so that 

(9.4) 

The weights are invariant under translations of the scale, but the constant 
is not. As for the Rasch model, a restriction is needed to render the model 
identifiable. If E~=l ßr = 1, then ßü = ßo, so that in this particular case, 
fixing the constant will not solve the indeterminacy. Fixing the constant 
will render the model identifiable only if E~=l ßr -=1= 1. In line with the 
solution for all other models in this volume, we will fix the mean of the 
distribution of the person parameter to zero. 

For a MIRID with other relations between the items than the ones de­
scribed by the item family structure, more restrictions may be needed to 
render it identifiable. Bechger, Verhelst, and Verstralen (2001) embedded 
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the MIRID in a more general model called the nonlinear logistic test model 
(NLTM), and derived the conditions the NLTM has to fulfill in order for 
the model to be identified. Maris and Bechger (2003) provide more specific 
conditions for the identifiability of MIRIDs with various kinds of relations, 
other than the item family structure. 

A problem related to the identification is the existence of equivalent 
MIRIDs. Bechger, Verstralen, and Verhelst (2002) described this problem 
for the LLTM, and Maris and Bechger (2003) extended it to the MIRID. 
MIRIDs for different componential theories about an item set may be for­
mally equivalent, so that they cannot be differentiated. For example, if 
we modify the latent item predictor matrix A (see Figure 9.2) into A (1) as 
shown in Figure 9.6 and the componential weight matrix W (see Figure 9.4) 
into w(1) as shown below in Figure 9.6, an equivalent MIRID is obtained. 
The resulting item parameter matrix is shown in Figure 9.5. The problem 
of equivalent MIRIDs is not surprising, since the MIRID is a model with 
bilinear terms, as in a factor analysis model, so that rotational invariance 
may come into play. Therefore, we prefer to use the MIRID in a confirma­
tory way, which is implied when the item family structure is imposed. The 
item family structure implies that the upper left part of W is an identity 
matrix, so that a transformation as from W to w(1) is not possible. 

A(l) = !tem family 1 ( 0011 - 0021 0021 0031 1 ) Item family 2 0012 - 0022 0022 0032 1 

Component item type 1 

U 
1 0 0 

) W(1) = Component item type 2 1 0 0 
Component item type 3 0 1 0 
Composite item (ß1 + ß2) ß3 ßo 

FIGURE 9.6. An equivalent MIRID. 

9.3 Applications of the MIRID 

9.3.1 Application 0/ the MIRID to the guilt data 

We will apply the MIRID to the guilt data described above and in Section 
9.9. These data are binary. The data are available on the website mentioned 
in the Preface. For this application, we subtracted Opo from ß~ (instead of 
subtracting ß~ from Opo), so that the probability of feeling guilty is a func­
tion of the difference between the guilt inducing power (ßD of a situation 
and the personal guilt threshold (Opo), This parametrization is used for all 
applications in this chapter, also for applications to the verbal aggression 
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data. 
The MIRID was fit with the procedure NLMIXED from SAS. A descrip­

tion of the options and the code is given in Section 9.7.1. Note that based 
on the study of Smits and De Boeck (2003), we knew that the Rasch model, 
used as a reference model for the MIRID, did not fit the data in absolute 
terms. However, for illustrative purposes, we will use it here as if it fits. In 
the second part of the chapter, a variant of the Rasch model that allows 
for unequal but fixed discrimination values will be used, called the one pa­
rameter logistic model (OPLM, Verhelst & Glas, 1995; Verhelst, Glas, & 
Verstralen, 1994). 

The goodness-of-fit values of the MIRID are 10549 (deviance), 10619 
(AIC), and 10745 (EIC). These values are similar to the goodness-of-fit 
values for the Rasch model - 10546 (deviance), 10628 (AIC), 10775 (EIC) 
- meaning that the MIRID fits the data about as weIl as the Rasch model. 
The values for the item parameters of the component items are given in Ta­
ble 9.1. Each column functions as a latent item predictor for the composite 
items. High values mean a high situational guilt inducing power. The values 
of the other parameters are given in Table 9.2. The effect of the composite 
items can be reconstructed based on the o:s from Table 9.1 and the ßs from 
Table 9.2. For example, the reconstruction for the composite item of the 
third item family is equal to (-.73 x .50) + (.13 x .55) + (-.39 x .03) + (.20) = 
-.11. As could be expected from the goodness of fit, there is a good cor­
respondence between the item parameters of the component items and 
the composite items as estimated under the Rasch model and as estimated 
(component items) and reconstructed (composite items) under the MIRID: 
the correlation between both is .99. The correlation between the item pa­
rameters of the 10 composite items as estimated under a Rasch model for 
all 40 items and the composite item parameters as reconstructed from the 
parameters of the estimated MIRID is also .99. 

Two of the componential weights are significant: the weights of Norm Vi­
olation and Worrying. 1 The weight of the second component is the largest, 
meaning that for our set of situations worrying is the most important com­
ponent of situational guilt feelings. The weight of the composite item con­
stant (.20) is the extra effect of being a composite item. Since the sum of 
the weights is elose to 1.00, the composite items have a ß~ that is almost 
a weighted average of the first two plus .20. In general, the interpretation 
of ßo is not easy because it depends on the centering of the latent pre­
dictors and also on the size of their weights. FinaIly, it is clear that guilt 
sensitivity as an underlying latent variable shows substantial individual dif­
ferences (<T~=1.12). The variance is statistically significant (p< .001) using 
the conservative Wald test for variances (see Chapter 2). 

1 Using the OPLM-MIRID also the weight of the third component was significant. 
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TABLE 9.1. Estimates and standard errors for the component item parameters 
or latent item predictor values (guilt data). 

Situation Norm Violation Worry T. Rectify 
(SE) (SE) (SE) 

1. Break-up -.09 (.14) 1.38 (.17) .52 (.15) 
2. Trumpet -2.70 (.22) -1.99 (.18) -2.14 (.20) 
3. Shoes -.73 (.15) .13 (.14) -.39 (.15) 
4. Movie .10 (.14) .42 (.14) .36 (.15) 
5. Discussion 1.48 (.17) 1.97 (.18) 2.55 (.23) 
6. Secret 2.81 (.23) 2.26 (.20) 1.94 (.19) 
7. Youth movement 1.32 (.16) 1.98 (.18) .85 (.16) 
8. Pen pal -.14 (.14) -.28 (.14) .08 (.15) 
9. Jacket .06 (.15) 1.90 (.19) 3.16 (.28) 

10. Homework -1.31 (.16) -1.53 (.16) -1.02 (.16) 

TABLE 9.2. Estimates and standard errors for the componential weight parame­
ters and variance of the person parameter (guilt data). 

Parameter 

ßl (weight of Norm Violation) 
ß2(weight of Worrying) 
ß3 (weight of Tendency to Rectify) 
ßo (composite item intercept) 
(}2 

(} 

Estimate (SE) 

.50 (.10) 

.55 (.13) 

.03 (.09) 

.20 (.08) 
1.12 (.12) 

9.3.2 Application of the MIRID to the verbal aggression data 

In the data set on verbal aggression, we have four situations and three differ­
ent kinds of verbally aggressive reactions (cursing, scolding, and shouting). 
Each type of aggressive reaction is measured in two different ways, which 
were called response modes: (1) whether one wants to display the corre­
sponding reaction in that situation (want-item), and (2) whether one actu­
ally would display the reaction (do-item). As we are interested in whether 
actually displaying an aggressive reaction can be explained by wanting to 
display that aggressive reaction, the items measuring the want-response 
mode were considered the component items, whereas the items measuring 
the do-response mode were considered the composite items. Hence, in this 
example, there is only one component (i.e., wanting), and each item fam­
ily consists of two items. We will call the wanting component the 'action 
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tendency.' 
In total there are 12 item families (four situations x three behaviors). 

Each situation is associated with three item families: one for each kind 
of verbally aggressive reaction. The latent item predictor matrix for two 
situations and the componential weight matrix are given in Figure 9.7. 
Note that we again used the parametrization ß~ - Opa, to be in line with 
the interpretation of ß~ as the inducing power of the situation for a certain 
behavior and Opa as the personal threshold. 

Item family 1: Situation 1, Curse an 1 
Item family 2: Situation 1, Scold a21 1 

A= Item family 3: Situation 1, Shout a31 1 
Item family 4: Situation 2, Curse a41 1 
Item family 5: Situation 2, Scold a51 1 
Item family 6: Situation 2, Shout a61 1 

w= Component item type 1 ( 1 0 ) Composite item ßl ßo 

FIGURE 9.7. Latent item predictor matrix A and componential weight matrix 
W for two situations of the verbal aggression data. 

The goodness-of-fit values for this MIRID are 8116 (deviance), 8146 
(AIC), and 8203 (BIC). These values approach the goodness-of-fit values 
for the Rasch model (8074 (deviance), 8124 (AIC), and 8218 (BIC)). Based 
on these criteria, the MIRID has a relatively good fit. The values for the 
item parameters of the component items are given in Table 9.3, and the 
values for the other parameters are given in Table 9.4. There is a good 
correspondence between the item parameters of the component items and 
the composite items as estimated under the Rasch model and as estimated 
(component items) and reconstructed (composite items) under the MIRID: 
The correlation between the item parameters (estimated or reconstructed) 
of the two models is equal to .99. The correlation between the item para­
meters of the 12 composite items as estimated by a Rasch model for all 
items and as reconstructed by the MIRID is also equal to .99. 

The weight of the want-response mode is quite large and highly signifi­
cant, meaning that it has strong predictive power for the do-response mode 
(ßl = 1.33). It follows from the value of ßl that the do-items have more 
variation in terms of their inducing power than the want-items have. The 
effect of being a composite item (constant item predictor in A) is negative 
(ßo = -.77). Given these results, it can be concluded that the inducing 
power is lower for doing than far wanting: If a want-item has a negative 
a, the fact that ßl is larger than 1, and that ßo is smaller than zero, nec-
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TABLE 9.3. Estimates and standard errors for the component item parameters 
(verbal aggression data). 

Situation Reaction Item Parameter Estimate (SE) 
Want 

1. Bus Curse an 1.40 (.13) 
1. Bus Seold a2I .76 (.12) 
1. Bus Shout a3I -.02 (.12) 
2. Train Curse a4I 1.40 (.13) 
2. Train Seold a5I .60 (.12) 
2. Train Shout a6I -.31 (.12) 
3. Store Curse a7l .46 (.12) 
3. Store Seold a8I -.61 (.13) 
3. Store Shout a9I -1.58 (.15) 
4. CaU Curse alO 1 1.10 (.12) 
4. CaU Seold an 1 .06 (.12) 
4. CaU Shout aI2I -.97 (.13) 

TABLE 9.4. Estimates and sandard errors for the componential weight parame­
ters and variance of the person parameter (verbal aggression data). 

Parameter 

ßI (weight of want-response mode) 
ßo (eonstant) 
a 2 

(} 

Estimate (SE) 

1.33 (.08) 
-.77 (.08) 
1.89 (.19) 

essarily leads to a lower inducing power for the eorresponding do-items. If 
a want-item has a positive a, the value of ßo eompensates for a ßI of 1.33 
up to values for aashigh as 2.33, a value that is not exeeeded in Table 
9.3. The a-value of 2.33 is ealculated by solving the equation aßI + ßo = a 
for a, which results in a = ßo/(l - ßI). Filling in the values for ßI and 
ßo (Table 9.4), one obtains the value of 2.33. Thus, with these results, the 
negative value of ßo means that for aU situations and behaviors one is in­
clined to do less than what one wants. FinaUy, the varianee of the random 
intercept is quite large (a~ = 1.89), and highly signifieant when relying on 
the eonservative Wald test for variances (p < .001). In sum, the verbaUy 
aggressive behavior (doing) has a lower inducing power than its action ten­
deney (wanting), and the pairs of the behaviors and situations (items) are 
better differentiated in the actual expression (do-items) than in the action 
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tendency (want-items). 

9.4 Extensions with randorn weights 

The MIRID assumes that the weights of the latent item predictors are 
the same for all persons. It would be interesting to allow for individual 
difIerences in these weights. For example, for some people worrying may 
be more important, whereas for other people the tendency to rectify may 
be more important, perhaps because they are more action-oriented. An 
extension of the MIRID, the random-weights MIRID (RW-MIRID), allows 
for the weights to be random variables. Except for its specific componential 
structure, the RW-MIRID is very similar to a multidimensional2PL model, 
as in both the RW-MIRID and the 2PL model person-specific parameters 
are the weights of latent item predictors. In the multi dimensional 2PL 
model these person-specific weights are the latent variables, and the item 
loadings correspond to the latent item predictors. 

Each random weight, denoted by ßpr, can be split into a mean (the 
fixed-efIect part ßr) and a deviation from that mean (the random-efIect 
part ()pr). In line with the previous chapters, the deviation from the mean 
will be considered the random weight. To construct the formula for the RW­
MIRID, the componential weight matrix is now a person-specific matrix, 
denoted with Wp . In the example of Figure 9.8, only the weight of the first 
latent item predictor is a random efIect, all other weights are fixed efIects. 
Of course in other contexts, the other predictors mayaiso have random 
weights. 

Comp.l Comp.2 Comp.3 Const. 
Pred. 

Comp. item type 1 

[L 
0 0 

t) Comp. item type 2 1 0 
Comp. item type 3 0 1 
Composite item ß2 ß3 

FIGURE 9.8. Example of a componential weight matrix 'ltp for the RW-MIRID. 

The formula for the RW -MIRID is 

TJpi = ()pa - A: WPT> (9.5) 

where for the component items: A: W pr = (tST> and for the composite items: 

A: Wp RH = L.~ (tsrßpr + ßa, with i as an index for the pairs (s, r), and 
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ßpr = Opr + ßr. 
Given that more than one random effect is included in the model, a multi­
variate normal distribution is assumed for ()p, the vector of random effects. 
For the example of Figure 9.8, ()p = (Opo, ßpd. 

Another way to extend the MIRID into a multidimensional model is 
the following: Until now it has been assumed that the same random inter­
cept (Opo) applies to the component items and the composite items. This 
is not necessary. There are cases where, dependent on the component, a 
different random intercept (a different dimension) applies. Such a model 
is called the multidimensional MIRID (MULTI-MIRID; Butter, 1994), but 
this extension will not be discussed in this chapter. When the intercept 
of the composite items (ßpo) and the overall random intercept (Opo) are 
the only random effects, the individual-differences structure of the model 
is equivalent with that of the learning model of Embretson (1991), with the 
component items as the equivalents of the stage(s) before learning and the 
composite items as the equivalents of the stage after learning. 

9.5 Applications of the RW-MIRID 

9.5.1 Application of the RW-MIRID to the guilt data 

In the example of situational guilt feelings three components were con­
sidered: Norm Violation, Worrying, and Tendency to Rectify. Because we 
have no apriori hypotheses about which component should have a random 
weight, three different models were estimated and compared, each with a 
different component that has a random weight. As mentioned earlier, the 
random-weights variant will be implemented in the OPLM-MIRID (yield­
ing the RW-OPLM-MIRID), instead ofthe previously used original MIRID 
to deal with differences in discrimination between the items. In contrast to 
the MIRID, the OPLM-MIRID allows for unequal but fixed discrimination 
values. To investigate the fit of this OPLM-MIRID, it has to be compared 
with the OPLM. 

The random-weights OPLM-MIRID was estimated with the procedure 
NLMIXED of SAS; see Section 9.7.2. Note that we again used the parame­
trization ß~ - Opo, to be in line with the interpretation of ß~ as the inducing 
power from the situation and Opo as the personal threshold. The goodness­
of-fit values for the OPLM-MIRID, and the three RW-OPLM-MIRIDs with 
one random component weight are given in Table 9.5. All of the goodness­
of-fit values of the RW-OPLM-MIRIDs mentioned in Table 9.5 are similar 
to the ones of the OPLM-MIRID, meaning that adding a random weight to 
the model does not enhance the fit. It seems that, for this sampIe of persons 
and situations, it was not necessary to assurne individual differences in the 
weights of any of the three components. 
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TABLE 9.5. Goodness of fit of the OPLM-MIRID and the RW-OPLM- MIRID 
(guilt data). 

Model Deviance Ale BIe 

OPLM-MIRID 10451 10521 10647 
RW-OPLM-MIRID 
Random weight for 
Norm Violation 10449 10523 10656 
Worrying 10451 10525 10658 
Tendency to Rectify 10451 10525 10658 

9.5.2 Application of the RW-MIRID to the verbal 
aggression data 

In the example of the verbal aggression data, the model had only one 
component. We assume that for some people what they want has a larger 
effect on what they do than for other people. The goodness-of-fit values 
for the RW-MIRID are 8028 (deviance), 8062 (Ale), 8125 (BIe) , which 
are clearly better than those for the original MIRID: 8116 (deviance), 8146 
(AIC) , and 8203 (BIe) , meaning that for some people what they want 
weights heavier in what they do than for other people. 

The parameter estimates of the component items (values of the latent 
item predictor) are given in Table 9.6, and the values for the other parame­
ters are given in Table 9.7. The variance of the weight is much smaller than 
the variance of the overall random intercept (1.02 vs 2.03). The correlation 
between both is .10. 

As in the MIRID with fixed component weights, wanting again has a 
serious effect on doing, and people tend to do less than they want when 
verbal aggression is concerned. The inducing power for the actual behavior 
is lower (for the average person) than that for the action tendency, up 
to a-values of 1.78. This is because the negative ßo (-1.03) compensates 
for a ß1 larger than 1 in all combinations of situations and behaviors. To 
investigate the effect of the individual differences we will consider a person 
with a ßp1-value situated 1.5 SD above the mean ßp 1 and a person with a 
ßp1-value situated 1.5 SD below the mean ßp1. Persons with a weight of 1.5 
SD below the mean ßp1 (ßp1 = .07) do more than they want in situation­
behavior combinations with an a-value below -1.11, which is the case for 
only one behavior-situation combination (a1,9 = -1.24). Persons with a 
weight of 1.5 SD above the mean ßp1 (ßp1 = 3.09) do more than they want 
in situation-behavior combinations with a-values higher than .49, so that 
in six of the twelve situation-behavior combinations such a person would do 
more than he or she wanted, while in six of the twelve situation-behavior 
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eombinations, some inhibition is expected. This means that, for individuals 
with a strong action tendeney effeet, the inhibition would not apply in half 
of the situations. 

TABLE 9.6. Estimates and standard errors for the component item parameters 
(verbal aggression data). 

Item parameter 
Situation Behavior Want Estimate (SE) 

1. Bus Curse (tn 1.72 (.13) 
1. Bus Seold (t21 .96 (.10) 
1. Bus Shout (t31 .23 (.09) 
2. Train Curse (t41 1.74 (.14) 
2. Train Seold (t51 .81 (.10) 
2. Train Shout (t61 .02 (.10) 
3. Store Curse (t71 .72 (.10) 
3. Store Seold (t81 -.15 (.10) 
3. Store Shout (t91 -1.24 (.15) 
4. CaU Curse (t1O 1 1.34 (.12) 
4. CaU Seold (tn 1 .44 (.09) 
4. CaU Shout (t121 -.58 (.12) 

TABLE 9.7. Estimates and standard errors for the componential weight parame­
ters and variance/covariance of the person-dependent parameters (verbal aggres­
sion data). 

Parameter 

ßl (mean weight of Component 1) 
a~Pl (varianee of eomponent weight) 
ßo ( constant ) 
a(j2 (varianee of overaU intereept) 

pO 

eov( Opo, Opd 

Estimate (SE) 

1.58 (.12) 
1.02 (.22) 

-1.03 (.09) 
2.03 (.22) 

.14 (.15) 

In sum, the results of the RW-MIRID confirm those of the MIRID with 
fixed weights, exeept for the fact that clear individual differenees appear in 
the effeet wanting has on doing. 



282 Dirk J. M. Smits, Stephen Moore 

9.6 Concluding remarks 

The main advantage of the MIRID and its variants is that in cases where 
no exact knowledge is available about the values of the components (latent 
item predictors), these values can be estimated. 

An advantage specific to the RW-MIRID is that one can test whether 
the assumption of fixed weights is reasonable. A better fit of the RW­
MIRID with random weights for one or more components would imply that 
there are individual differences in how important the components are in 
explaining the composite items. These composite items may be considered 
criterion items, since the responses to these items are explained (predicted) 
by the responses to other items. 

Finally, the principle behind the MIRID can easily be generalized to other 
basic models, like for example the 2PL (Birnbaum, 1968) or the multidi­
mensional Rasch model. Because extending the MIRID by incorporating 
additional random effects is straightforward, the MIRID is a flexible tool 
to test the decomposition of general concepts into more elementary aspects. 

9.7 Software 

9.7.1 MIRID (guilt data) 

The MIRID was fit using the NLMIXED procedure of SAS V8. For the 
numerical integration the adaptive Gaussian quadrature method with 15 
nodes was used and for the optimization the N ewton-Raphson technique 
was used. Remember that in this application, we had 10 item families, 3 
latent item predictors or components, and One item per component per 
item family. 

Code 

PROC NLMIXED data=guilt method=gauss 
technique=newrap qpoints=15; 
PARMS al-a30=1 bl-b3=1 bO=l sd=l; 
alphal=al*xl+a2*x2+a3*x3+a4*x4+a5*x5 
+a6*x6+a7*x7+a8*x8+a9*x9+al0*xl0; 
alpha2=all*xll+a12*it12+a13*x13+a14*x14+a15*x15 
+a16*x16+a17*x17+a18*x18+a19*x19+a20*x20; 
alpha3=a21*x21+a22*x22+a23*x23+a24*x24+a25*x25 
+a26*x26+a27*x27+a28*x28+a29*x29+a30*x30; 
ex=exp(-theta+(1-co)*(alphal+alpha2+alpha3) 
+co*(bO+bl*alphal+b2*alpha2+b3*alpha3)); 
p=ex/ (1 +ex) ; 
MODEL Y '"'-' binary(p); 
RANDOM theta '"'-' normal(O,sd**2) subject=person; 
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ESTIMATE 'sd**2' sd**2; 
RUN; 

Comments 

In the code, the parameters al to a30 are renumbered using one index to 
simplify the SAS code. They can easily be matched to the aST as given 
in the formulas. The terms alphal, alpha2 and alpha3 refer to the com­
ponents Norm Violation, Worrying and Tendency to Rectify, respectively. 
The dummy variables xl to x30 are used to select the correct weight, and 
the dummy variable co is used to select the appropriate part of the formula: 
the component items part or the composite items part. 

9.7.2 RW-MIRID (guilt data) 

The same options were used as for the estimation of the MIRID (Section 
9.7.1). 

Code 

PROC NLMIXED data=guilt method=gauss noad 
technique=newrap qpoints=15; 
PARMS al-a30=1 bl-b3=1 bO=l sdth=l cothga=l sdga=l; 
alphal=al*xl+a2*x2+a3*x3+a4*x4+a5*x5 
+a6*x6+a7*x7+a8*x8+a9*x9+al0*xl0; 
alpha2=all*xll+a12*it12+a13*x13+a14*x14+a15*x15 
+a16*x16+a17*x17+a18*x18+a19*x19+a20*x20; 
alpha3=a2l*x2l+a22*x22+a23*x23+a24*x24+a25*x25 
+a26*x26+a27*x27+a28*x28+a29*x29+a30*x30; 
ex=exp(-theta+(1-co)*(alphal+alpha2+alpha3) 
+co*(bO+bl*alphal+(b2+gamma)*alpha2+b3*alpha3)); 
p=ex/(l+ex); 
MODEL y '" binary(p); 
RANDOM theta gamma normal([O,O], [sdth**2,cothga,sdga**2]) 
subject=person; 
ESTIMATE 'sdth**2' sdth**2; 
ESTIMATE 'sdga**2' sdga**2; 
RUN; 

Comments 

1. In the code it is assumed that the second component has a random 
weight. 
2. Note that the code for a RW-MIRID is given, and not for the RW­
OPLM-MIRID. To fit a RW-OPLM-MIRID, the term theta in the code 
has to be replaced with the term a*theta, with a corresponding to the 
known discrimination value of the current item. 
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9.8 Exercises 

1. Calculate the item parameters for the composite items under the MIRID 
for both examples. 

2. The MIRID is presented as a unidimensional model. However, the item 
parameters of the composite items are decomposed into different compo­
nents. Explain why there is no contradiction between the unidimensionality 
of the model and the decomposition into different item components. Does 
the same reasoning apply for the RW-MIRID? 

3. Using random weights did not pay off for the guilt data. Perhaps it 
would pay off better to define a dimension per set of component items (a 
component-specific random intercept). Formulate such a model and explain 
how you will treat the composite items, and which alternatives could be 
considered. 

4. Examine gender differences in the guilt data with three different MIRIDs: 
one in which females can differ from males in their overall proneness to 
experience guilt, one in which the importance of one of the components 
differs between males and females, and one in which the values of the la­
tent item predictors differ between males and females (e.g., because the 
interpretations of the situations differs between males and females ). U se 
the NLMIXED procedure from SAS for the estimation. 

5. Write down the formula for a MIRID in which the effect of the con­
stant for the composite items is assumed to be a random effect. Estimate 
this MIRID for the verbal aggression data using the NLMIXED procedure 
from SAS. 

9.9 Appendix: Guilt data 

Situations (Original in Dutch) 

1. For some time you have been dating a person you are not really in love 
with. When you break up, you find out that he/she was in love with 
you (and was taking the relationship very seriously). The break-up 
hurts hirn/her considerably. (Break-up) 

2. For some years now you have been a member of a brass band. As a 
result, you learned to play trumpet for free. Now that you're skilled 
enough, you leave the band because you don't like the members of 
the band any more. (Trumpet ) 

3. During the holidays, you are working as a salesperson in a clothing 
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and shoestore. One day, a mother with four children enters the store. 
One of the kids wants Samson-shoes (Samson is a popular doll figuring 
in a Belgian TV-series for children). The mother leaves the child with 
you while she goes on to look for clothes for the other children. The 
child tries on different types and sizes of shoes, but after a while 
the child gets tired of fitting the shoes and refuses to continue. The 
mother picks a pair that had not been tried on before and you seIl 
this pair to the mother. The next day, the mother wants to return 
the shoes because they do not fit. Your boss takes back the shoes and 
reimburses the mother. The shoes have been worn however, and they 
are dirty. Because of this, they cannot be sold anymore. Your boss 
says that it doesn't matter, and that everyone is capable of mistaking 
the size of shoes. (Shoes) 

4. A not so close friend asks you if you want to join hirn/her to go to 
the movies. You tell hirn/her that you don't feellike it, and want to 
spend a quiet evening at horne. That evening you do go out with a 
closer friend. (Movie) 

5. During a discussion, you make a stinging remark toward one of your 
friends. You notice that it hurts hirn/her, but you pretend not to see 
it. (Discussion) 

6. A friend teIls you something in confidence, and adds that he/she 
would not like you to spread it around. Later, you do tell it to someone 
else. (Secret) 

7. You are a member of a youth movement. One day the group leaders 
hang a rope between two trees, so you can glide from one tree to 
another. Jokingly, some other members make the stop of the pulley 
unclear. You see them doing it, but you do not help them. The fol­
lowing member, who wants to glide to the other tree, did not see that 
the stop was made unclear. You do not warn hirn/her. Halfway he 
falls from the rope, and he passes out. (Youth movement) 

8. You have a pen pal. You get bored with writing to hirn/her, and 
suddenly, you stop corresponding with hirn/her. After one and a half 
years, he/she writes to you again, and again, but you do not re­
spond. (Pen pal) 

9. You borrowed a jacket from a friend to wear when you go out. At the 
party, you leave the jacket on achair. When you are about to leave, 
you notice the jacket has disappeared. In all prob ability, it has been 
stolen. (Jacket) 

10. One evening, you do not feellike doing your homework. The following 
day, you copy the assignment of a friend who clearly has gone through 
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Items 

a lot of trouble finishing it. You get a good grade for your assignment, 
the same grade as your friend. (Homework) 

1. Do you feellike having violated a moral, an ethic, a religious and/or 
a personal code? 

2. Do you worry about what you did or failed to do? 

3. Do you want to do something to rectify what you did or failed to do? 

4. Do you feel guilty about what you did or failed to do? 

Respondents 

The respondents were 268 high-school students between 17 and 19 years old 
from three high schools. Each school distributed the inventories to students. 
The students were given some time during the day to fill in the inventories 
individually. Within two weeks, 268 completed inventories were returned 
from 138 female students and from 130 male students. 
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Chapter 10 

Models for residual 
dependencies 

Francis Tuerlinckx 
PanI De Boeck 

10.1 Introduction 

The models discussed in the previous chapters recognize the clustered struc­
ture of data one is confronted with most often in psychometrics (Le., items 
within persons). The within-person dependencies arising from this cluster­
ing are handled through a random effect or latent variable for person p, 
denoted as Bp • In some cases, there are several major sources of individual 
differences, and they have to be accounted for by more than one random 
effect (see Chapter 8 on multidimensionality). Conditional on these ran­
dom effects, the responses to the different items in the data set should be 
independent - this requirement is called conditional independence or local 
(stochastic) independence. However, it appears that in many applications, 
not all dependence between the responses can be explained by the random 
effects one assumed to underly the responses. In those cases, it is said that 
there remain some residual dependencies not accounted for by the model, 
a phenomenon also denoted as local item dependencies (LIDs). Situations 
in which residual dependencies may occur are ample. Consider for instance 
the case where items of a reading test can be subdivided into groups of 
items each sharing the same reading passage. Data from a test with read­
ing passages may show more dependencies than can be accounted for alone 
by a single reading ability dimension. The conditional independence as­
sumption mayaIso be violated if outcome-dependent learning occurs while 
taking the test. The methods we discuss in this chapter are designed for 
handling such residual dependencies. 

In many cases, residual dependencies are regarded as a nuisance because 
the researcher is not interested in the structure of the remaining dependen­
cies in and of themselves. The researcher wants to model the dependencies 
in some way in order not to jeopardize the measurement or inference that 
is the purpose of the research. However, there are situations in which the 
dependencies are the phenomena of interest because they further an under­
standing of the data, or because they are the focus of research quest ions 
one has (e.g., Smits, De Boeck, & Hoskens, 2003). For instance, looking at 
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dependencies may be a way to investigate learning, or to understand how a 
person's behavior is based on what is wanted (see Chapter 7 for the latter). 

Residual dependencies are often the result of an additional organizing 
principle in the data (besides the common items-within-persons clustering) 
that is not taken into account by the model. For instance, in case a test 
is built around a few pieces of common stimulus material such as reading 
paragraphs each followed by several questions, these common stimuli form 
the additional organizing principle in the data. Another organizer can be 
that the items are ordered along the time dimension. Any group of items 
that belong together for some reason and are (suspected of) showing resid­
ual dependencies is called an item bundle (Rosenbaum, 1988; Wilson & 
Adams, 1995) or in this chapter, a testlet (Wainer & Kiely, 1987) (this 
widens the usual definition of the testlet). Furthermore, it will be assumed 
that while conditional independence may be violated within a testlet, it 
still holds for items not belonging to any test let and it also holds between 
testlets. However, it is not always the case that partitions of items can be 
found between which conditional independence holds; if that happens, all 
items belong to a single testlet. 

In this chapter we focus on handling residual dependencies conditionally 
on the presence of one or more random effects. Random effects are con­
sidered in this volume as the basic modeling tool for correlated data. The 
development of tools for handling residual dependencies is based on the 
three approaches already described in Chapter 4: marginal models, condi­
tional models, and random-effects models (see also Fahrmeir & Thtz, 2001). 
The same three approaches are applied here to models in which random 
effects are already included but where this proved not to be sufficient. For 
simplicity, we will evaluate the conditional independence ass um pt ion only 
for models with a single random effect, but all presented methods can be 
readily generalized to higher dimensions. 

We start with a short summary of the three approaches described in 
Chapter 4. First, a marginal modeling approach may be pursued in which 
we require the prob ability given the random effect to follow an apriori 
specified functional form, while an additional dependence structure is put 
on top of these marginals to explain residual dependencies. Second, there 
are the conditional models in which the probability of a certain response 
on an item is modeled conditionally on some or all other responses on the 
remaining items. Third, additional random effects may be included into the 
model to account for dependencies. Although the order of the approaches 
is listed here in increasing degree of complexity (the marginal approach 
being the simplest and the random-effects one the most difficult), we will 
present the models in a different order in this chapter because we believe 
that another order fits better the relative importance of the methods in 
psychometrics. 

Throughout the discussion of each of these approaches, it will become 
clear that the subject of this chapter is related to the chapter on models for 
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polytomous data (Chapter 3), the chapter with the statistical background 
(Chapter 4), the chapter on person-by-item predietors (Chapter 7) and the 
chapter on multidimensionality (Chapter 8). For this reason, the treatment 
of the dependence models will be largely theoretical in this chapter (except 
for an illustration of a graphical technique to assess residual dependencies) 
and the reader is referred to other chapters for the relevant software code 
to estimate the models. 

A more traditional psychometrie approach for residual dependencies due 
to testlets is based on computing the sum of I-responses to the testlet 
question and modeling it with a model for ordered polytomous data (e.g., 
the partial credit model; see Keller, Swaminathan, & Sireci, 2003; Wilson 
& Adams, 1995; Yen, 1993). However, this sum-score method will not be 
covered in this chapter. Although a praetical approach in many cases, it 
discards much of the information in the data, because different response 
patterns with the same sum scores may contain different information, a 
point which is also made by Wilson and Adams (1995). Keller et al. (2003) 
show that the inferences based on it are not always valid. 

In the next paragraphs we give a short historical overview of the devel­
opments in methods for residual dependencies, focusing on the three major 
types of methods introduced earlier and on assessment tools for residual de­
pendencies. Conditional models were introduced and studied in the statis­
ticalliterature by Bonney (1987), Connolly and Liang (1988), Cox (1972), 
Prentice (1988) and Qu, Williams, Beck, and Goormastic (1987) and in 
econometrics by Lee (1981), Nerlove and Press (1973), and Schmidt and 
Strauss (1975). Within item response modeling these models were con­
sidered by Hoskens and De Boeck (1997), Jannerone (1986), Kelderman 
(1984), Verhelst and Glas (1993), and Wilson and Adams (1995). 

References to models assuming independence extended with random ef­
feets to ac count for additional dependencies are already given in the pre­
vious chapters. Bradlow, Wainer, and Wang (1999) were among the first 
to include additional random effects to model residual dependencies due to 
testlets. However, multidimensional extensions of unidimensional random­
effects models are also motivated by the fact that unidimensionality is often 
a too striet requirement even without testlets. 

Most marginal models are not based on a logit model, but are instead 
multivariate extensions of the probit model (Ashford & Sowden, 1970; 
Lesaffre & Molenberghs, 1991). Other marginal modeling approaches will 
not be discussed in this chapter, but they deserve special mention here. A 
well-known method of estimating marginal models without random effeets 
and at the same time taking into account dependencies is the general­
ized estimating equation (GEE) approach, developed by Liang and Zeger 
(1986) and Zeger and Liang (1986). A likelihood -based variant of the G EE­
approach is discussed by Fitzmaurice, Laird, and Rotnitzky (1993), and 
the latter method is transferred by Ip (2002) to the framework of resid­
ual dependencies in random-effeets models. Yet another marginal model-
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ing approach is the Bahadur model (Bahadur, 1961) and it has also been 
generalized to an item response modeling framework by Ip (2000, 2001). 

Finally, in the psychometrie literature, some research has been devoted 
to the development of tests or indices for the detection of violations of the 
conditional independence assumption (see Chen & Thissen, 1997; Douglas, 
Kim, Habing, & Goo, 1998; Rosenbaum, 1984, 1988; van den Wollenberg, 
1982; Yen, 1984). 

We will first present a graphical technique for assessing residual depen­
dencies. Next, models of each of the three approaches will be discussed, 
and finally, the three approaches will be compared. Gur main focus in this 
chapter will be on models for binary items and the basie model we will 
work with in this chapter is the Rasch model. 

10.2 Assessment of residual dependencies 

Several exploratory techniques for detecting residual dependencies have 
been developed by psychometricians (see the historie al overview in the 
preceding section) and most of these techniques are based on formal tests, 
that is, a numerical value for a test statistic is computed following a recipe 
which is then compared explicitly to a reference distribution leading to a 
p-value. 

In this chapter we propose a more informal and graphieal procedure 
for evaluating residual dependencies, based on the ideas of the parametric 
bootstrap (Efron & Tibshirani, 1993) and graphical model evaluation tools 
(Gelman, 2002; Gelman, Goegebeur, Therlinckx, & Van Mechelen, 2000). 
Gur method is also related to the difference test for log odds ratios pro­
posed by Chen and Thissen (1997) and the procedure may be extended 
to other indiees for residual dependencies. Fitting the Rasch model to the 
verbal aggression data and then applying our technique far the evaluation 
of residual dependencies results in Figure 10.1. 

Empirical log odds ratios 

The construction1 and interpretation ofFigure 10.1 needs some clarification 
and we start with the top row of the figure. First, for all possible pairs 
out of the 24 items, we computed the empirical log odds ratio, defined2 

as ~~~~!:~~~~~~!:~~, where nll is the observed frequency of a joint (1,1)­
response for the item pair under study, and so on. Next, the log odds ratios 
are converted into gray-scale values and placed in the upper-diagonal part 

1 A Matlab program was written to construct Figures 10.1 and 10.2. It can be obtained 
from the website mentioned in the Preface. 

2The number .5 is added to all counts to circumvent the problem that zero counts 
may pose. 
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of an image consisting of 23 by 23 squares (the first column and the last row 
can be deleted); this is the left-hand side figure in the top row. A darker 
value in the gray-scale matrix refers to a higher value for the empiricallog 
odds ratio, while a lighter value is chosen for a lower one. In a second step, 
we fitted the Rasch model to the observed data set and simulated four new 
artificial data sets based on the parameter estimates. The four figures on 
the right-hand side of the top row represent the empiricallog odds ratios 
of these four artificial data sets. 

The order in which the items are represented in the matrices is as follows: 
first all want-items and then all do-items. Within each Behavior Mode, the 
order of the four situations is: Bus, Train, Store, and Call. Within each 
situation the order of Behavior Type is Curse, Scold, and Shout. 

Rasch model log odds ratios 

If the Rasch model can explain the dependencies in the observed data, 
the observed gray-scale matrix should not differ systematically from the 
simulated ones (e.g., if the labels for the five matrices were lost, it would 
be impossible to pick the observed one from it). By comparing the left 
observed figure with the four replicated ones, it is clear that the Rasch 
model is not able to capture the dependence structure in the data. The 
first striking feature is that in general the left figure appears to be darker, 
indicating that the observed data have higher empiricallog odds ratios than 
the simulated data. Second, there seem to be regularities in the observed log 
odds ratio matrix (indicated by the somewhat regular patterns of dark and 
light squares in the figure ) that are not present in the replicated matrices. 
To see an example where the simulated matrices are much more like the 
original data matrix, turn to Figure 10.2. 

FIGURE 10.1. Log odds ratio plot for the Rasch model. Figures in row 1 contain 
dependencies between pairs of items; figures in row 2 contain average depen­
dencies based on wanting and doing combined with behaviors; figures in row 3 
contain average dependencies based on a common situation. The first figure in 
each row is derived from the data, the other four stern from data generated from 
the Rasch model estimates. 
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Log odds ratios based on item properties 

To have a clearer idea where the structure in the observed log odds ratios 
comes from, we computed average log odds ratios, based on the item prop­
erties (Behavior Mode, Situation Type and Behavior Type). The result is 
shown in the second and third row of Figure 10.1. For the second row, we 
focused on the six possible combinations of Behavior Mode (Want and Do) 
with Behavior Type (Curse, Scold, and Shout). All log odds ratios for which 
both items of the pair refer to the same combination of Behavior Mode and 
Type are averaged and they are shown on the diagonal of the gray-scale 
matrix. The off-diagonal elements refer to the average log odds ratios where 
one item refers to one Behavior Mode-by-Behavior Type combination and 
the other item to another combination. The ordering of the combinations 
is as follows: wanting to curse, wanting to scold, wanting to shout, cursing, 
scolding, and shouting. Again, darker shades represent higher (average) log 
odds ratios and lighter shades lower values. 

It can be seen that the diagonal elements are much darker than most of 
the off-diagonal ones. This indicates that the items that are based on the 
same Behavior Mode and Behavior Type have higher dependencies than 
items based on different Behavior Modes and Behavior Types. We also see 
that the three off-diagonal elements that correspond to the average log 
odds ratios of items with the same Behavior Type but a different Behavior 
Mode are slightly higher than the other off-diagonal elements. There also 
seems to be a general higher (Le., darker) dependence between items of the 
same Behavior Mode but with a different Behavior Type. In comparison, 
the Rasch-model based simulated log odds ratios show no pattern at all 
after averaging. 

We repeated the averaging procedure, but now on the basis of the four 
situations (Bus, 'Ifain, Store, Call, depicted in that order). Once again, we 
see that the diagonal elements of the averaged gray-scale matrix tend to 
have a substantial darker shade, indicating that the items referring to the 
same situation have a higher dependence. The four frustrating situations 
can be grouped in two groups according to whether someone else is to 
blame or one's self is to blame (Situation Type). The two Other-to-blame 
situations seem to have to a higher interdependence but a similar effect does 
not show up for the two Self-to-blame situations. Looking at the replicated 
averaged log-odds ratio matrix, we do not see a pattern that resembles the 
pattern obtained with the observed data. 

These exploratory graphical analyses show that the Rasch model (with 
the intercept as the only random effect) is unable to explain the pattern of 
dependencies present in the observed data, so that one may conclude that 
there will be some residual dependencies. In the following sections, we will 
supplement the Rasch model with one of the three types of dependence 
approaches. 
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10.3 Conditional models for residual dependencies 

In a conditional independence model, for example the Rasch model, the 
probabilities of a response on a certain item can be defined without refer­
ence to the responses on other items. In the models discussed in this section, 
we will condition on the responses on other items to model the probability 
of a certain response on a given item in order to take into account residual 
dependencies. Dependent on which responses are conditioned upon, we dis­
tinguish between two classes of models: recursive and nonrecursive models. 

In recursive models (also called transition models in Chapter 4), there 
exists an apriori ordering of the items so that the probability of a response 
on an item higher in the order can only be influenced by responses on 
items lower in the order. In such a model, no feedback loops exist between 
the items. Consequently, at least one of the items should be exogenous, 
meaning that for modeling its prob ability distribution no information from 
the responses on the other items is necessary (the non-exogenous items are 
endogenous). In nonrecursive models, feedback loops are allowed and the 
possibility exists that all responses influence all others. 

Recursive and nonrecursive models will be discussed below. Our labels 
for distinguishing between these two model classes are borrowed from the 
domain of structural equations modeling (Bollen, 1989), where a similar 
distinction exists. However, a different terminology is common in other con­
texts. For instance, recursive models have also been called autoregressive 
models (Bonney, 1987), dynamic models (Verhelst & Glas, 1993), asymmet­
rie models (Fahrmeir & Thtz, 2001), and transition models (see Chapter 4 
of this volume). Nonrecursive models have been called interaction models 
(Hoskens & De Boeck, 1997), item bundle models (Wilson & Adams, 1995), 
simultaneous logit models (Schmidt & Strauss, 1975), and symmetrie mod­
els (Fahrmeir & Thtz, 2001). 

10.3.1 Recursive models 

General model 

As mentioned above, a requirement for applying recursive models is that 
an apriori ordering of the items exists. The most common example of 
such an ordering is when the items can be ordered along the time axis 
and one wants to model outcome-dependent learning while taking the test. 
Because of the prototypieal nature of this example, we will denote items 
lower in the ordering as 'earlier,, 'previous,' or 'preceding' items and items 
higher as 'later.' It is assumed here that the indices of the items not only 
distinguish between the items but also refer to the order of administration. 
Ordering in time implies a complete order between the items, but that 
is not necessary to specify recursive models. A partial ordering between 
items may be sufficient. However, the essential feature is that there are no 
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feedback loops. 
In a recursive model, the joint probability of a response vector yp can 

be decomposed as follows (for simplicity, we discard in this chapter the 
conditioning on a predictor vector X pi): 

Pr(l'pl = Ypl, ... ,l'p1 = Yp1) (10.1) 

Pr(l'pl = Ypl)Pr(l'p2 = Yp2IYpl)'" Pr(l'p1 = Yp1IYPI, ... , Yp,I-d· 

In the full model, the logit of the prob ability of responding with a 'correct' 
response on item i (i > 2) is defined as 

logit(Pr(l'pi = 1IYpl, ... , Yp,i-I)) = ()p - ßi + W~i8i' (10.2) 

where W pi = (YPI, ... , Yp,i-I, YpIYp2,···, Ypl'" Yp,i-I)' contains all single 
responses on the preceding items and all possible cross-products of the 
preceding responses. Item 1 is defined to be the exogenous item, and hence, 
the vector W pI is empty by definition and for i = 2, W p2 = Ypl' 

The dependence parameters relevant for item i are contained in the vector 
8i . Note that a single response in the vector W pi intro duces a parameter 
for the effect this earlier item has on the response to item i, a product of 
two responses in W pi is for modeling the joint effect of two ear lier responses 
and so on. It is straight forward to check that this formulation leads to a 
fully parametrized model. The full model contains (i) = I ß-parameters 

and (D k-way dependence parameters (k = 2, ... ,1). The total of all these 

parameters is ~{=I (D = 21 - 1, which equals the number of free joint 
probabilities. 

Given the responses on the relevant preceding items, the prob abi li ti es 
are independent, which is shown by Equation 10.1. Fitting these recur­
sive models only requires an extension of the predictor matrix to include 
responses on previous items. To illustrate this adaptation, we first define 
8 = (8~, ... , 8~ )'. Then the predictor submatrix W p for person p relevant 
for the dependence parameters is the following: 

O(W~2) O(W~3) W~1 

where the notation O(W~2) stands for a matrix of zeros of the same size as 
W~2' Because W p may be different for different p, and within the matrix 
its values differ over items, the predictors in the recursive model are person­
by-item predictors (see Chapter 7 in this volume). 

Model restrietions 

From the general model in Equation 10.2, several interesting models can 
be derived by putting restrictions on the vector of parameters 8 and the 
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predictor matrices W p (see also Verhelst & Glas, 1993). A first common 
model follows by assuming that only the response on the previous item has 
an effect on the current item. This Markovian assumption is translated into 
the model by defining the predictor submatrix W p as follows: 

0 0 0 
Yp1 0 0 

W p = 0 Yp2 0 (10.3) 

0 0 Yp,I-1 

and 15 = (81 , ... ,8 I -d', where 8i - 1 is the effect of the response on item i-I 
on the probability distribution for item i. A further simplification follows 
by restricting the effect of the previous response to be equal for all items, 
so that W p reduces to a single column vector W p = (0'YP1, ... ,Yp,I-d' 

and 15 reduces to the scalar 8. 
A second well-known model is specified by dropping all cross-products 

of responses from the W-vectors and setting all remaining 8-parameters 
equal to each other (15 simplifies to 8). If that is done, then the predictor 
submatrix W p reduces to a column vector with only the number of previous 
I-responses as a quantitative predictor (see Verhelst & Glas, 1993): 

o 
Yp1 

Yp1 + Yp2 

""I-1 
,0i=1 Ypi 

(10.4) 

For the combination of the model in Equation 10.4 with item properties 
as predictors, see Verguts and De Boeck (2000). The model from Equa­
tion 10.4 can be relaxed if the number of previous I-responses is treated as 
a qualitative predictor such that I-I indicator variables appear in the pre­
dictor submatrix W p, each coding for a different sum score ranging from 
1 to 1- l. 

As aremark, we add that in the case of only two items, there is no differ­
ence between the model in Equation 10.3 and the one in Equation 10.4. The 
probability of person p for a response Yp1 on the first item is a simple Rasch 
model. For illustrative purposes, we present here the model formulation for 
two items: 

(10.5) 

and the prob ability for a response Yp2 on the second item given the response 
on the first one equals 

(10.6) 
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Note that in the model resulting from Equation 10.4 every preceding 
correct response has the same effect on the current response. That may be 
an overly restrictive assumption to make, for instance in long tests, where 
the responses at the beginning may be forgotten after a while. A possible 
solution is to construct the following predictor matrix: 

0 0 0 
Ypl 0 0 

W p = Yp2 Ypl 0 

Yp,I-l Yp,I-2 Ypl 

together with the parameter vector d = (8,82 , .•. ,81- 1)' (with 0::; 8::; 1), 
so that the directly preceding response always has the largest influence and 
the influence of the other responses decrease if the time lag increases. This 
model is not a generalized linear mixed model anymore but a nonlinear 
mixed model instead because the dependence parameter 8 enters the logit 
of the probability in a nonlinear way. However, it can still be estimated 
with, for example, the procedure NLMIXED from SAS. 

Interpretational issues 

There are three important interpretation aspects of recursive models we 
would like to highlight. 

First, the interpretation of the 8-parameter(s) deserves some attention. 
For simplicity, we focus here only on the model that uses the previous 
number of I-responses as a quantitative predictor, and in which 8 is the 
learning parameter, the effect of one or more previous successes. The log 
odds of a I-response on item i given t a previous successes equal ()p - ßi +8ta 

and given tb previous successes the log odds are ()p - ßi +c5tb. Hence the odds 
of a I-response change with a factor eo(ta -tb) if t a instead of tb successes are 
achieved. Now if 8 > 0, it is clear that there is a positive effect from positive 
responses because then the odds of aI-response to an item increase if a 
larger number of previous successes was made. If 8 = 0, there is no learning 
and the model simplifies to a product of ordinary Rasch models, therefore 
the latter is nested within the recursive model. 

Second, an interpretational complication arises in the recursive models. 
In the Rasch model, the functional form of a single item's item character­
istic curve is a logistic nlllction and the item parameter ßi has the natural 
and simple interpretation of the difficulty of an item. The latter fact fol­
lows because ßi marks the point at which the chances to solve the item are 
50% for a person with ()p = ßi. However, except for the first item, these 
two properties do not hold anymore in the recursive conditional models. 
Assuming that there are two items, we derive the probability of a correct 



10. Models for residual dependencies 299 

response on item 2 from Equations 10.5 and 10.6: 

1 

Pr(Yp2 = 1) L Pr(Ypl = m, Yp2 = 1) 
m=O 

1 

L Pr(Yp2 = llYpl = m)Pr(Ypl = m) 
m=O 

Two interesting observations can be made from Equation 10.7. First, the 
marginal probability is not a logistic function and its shape depends on 
the dependence structure of the model (in this case, the parameter 8) and 
on the item parameter ßl and not just on ß2. Second, the parameter ß2 
does not have the natural interpretation of marking the point on the latent 
scale where the probability of aI-response is .5. Different values of 8 lead 
to different locations on the latent scale where Pr(Yp2 = 1) = .5. Because 
of these two things (no logistic marginals and item parameters are not the 
item difficulties), it is said that there is no reproducibility3 in this model 
(Fahrmeir & Tutz, 2001; Ip, 2002). 

A third feature is the so-called backward learning (Verhelst & Glas, 1995). 
Although there is an apriori ordering in the items (e.g., time), and although 
we have modeled the effect of earlier responses on later ones, it seems that 
later items also have an 'effect' on earlier ones. To explain backward learn­
ing, assume we have the responses of person p on two items, Yp1 and Yp2 . 
In the recursive model, we specify Pr(Ypl = Ypl) and Pr(Yp2 = Yp21Ypt} and 
it may seem therefore that the response probability for item 1 is unaffected 
by the response on item 2. However, when the conditional probability of 
a response on the first item given the second is derived, some simple but 
tedious algebra shows that: 

Pr(Ypl = Ypl, Yp2 = Yp2) 
Pr(Yp2 = Yp2) 

Pr(Ypl = Ypl)Pr(Yp2 = YdYpl) 

(10.8) 

Pr(Yp2 = Yp2) 

exp (Ypl (Bp - ßl + YP2 8 + f(Bp, ß2, 8))) 
1 + exp (Bp - ßl + YP28 + f(Bp, ß2, 8)) , 

with f(Bp , ß2, 8) = log C~~C~::Ii) and 8 as the dependence parameter. 

3We adopt here a pragmatic definition of reproducibility. For a more detailed expla­
nation, see Fitzmaurice, Laird, and Rotnitzky (1993). 
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From Equation 10.8 we can deduce that, although not specified explicitly 
and contrary to the ordering in time, the response on item 2 has an 'effect' 
on item 1 (and more specifically, the effect in both directions actually ap­
pears to be the same, see below). The implication of backward learning is 
unavoidable and it occurs because in the population of persons who give 
aI-response to item 2, there is an overrepresentation of persons who also 
gave aI-response to item 1 (given that learning occurs, see Verhelst & 
Glas, 1995). 

10.3.2 N onrecursive models 

General model 

In nonrecursive models, feedback loops between the different items are al­
lowed and therefore we need to specify for each item which items are di­
rectly associated with it. For simplicity, we start with the assumption that 
all items are endogenous. For the most general model the logit of a 1-
response on an item i conditional on the responses on all other items is as 
follows: 

()p - ßi + LYpj 8ij + L YpjYpk 8ijk + ... 
j#i j,k#-i 

+ 

where the vector y~i) contains all responses of person p except the one on 
item i. As can be seen from Equation 10.9, the conditional distribution of 
Ypi given all other responses has a logistic form (for all items i). 

In Equation 10.9 we have specified all conditional distributions, but we 
actually need the joint distribution. It turns out that restrictions have to be 
imposed on the 8s to ensure that the conditional probabilities for all items i 
in Equation 10.9 uniquely determine a joint distribution. If such restrictions 
are imposed and the conditional distributions lead to a unique joint dis­
tribution, it is said that the conditionals are compatible (Arnold, Castillo, 
& Sarabia, 1999, see also Chapter 7 in this volume). All restrictions are 
symmetry conditions on the dependence parameters. For two-way associa­
tions this means that the parameter representing the association between 
Ypi and Ypj (Le., 8ij ) should be equal to the parameter representing the 
association between Ypj and Ypi (Le., 8ji ). Similar symmetry restrictions 
should also be imposed for higher-order associations. 

It can be proven that the symmetry conditions are necessary and suf­
ficient for the existence and uniqueness of a joint distribution (Arnold et 
al., 1999). We will not present a proof here, but there is an intuitive argu­
ment supporting this conclusion. If we start from the most general model in 
Equation 10.9 with all possible interactions between items included, then 
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it is only after imposing the symmetry restrictions on the parameters that 
we arrive at a model with as many parameters (21 - 1) as there are free 
probabilities. 

Moreover, it can be seen from comparing Equations 10.6 and 10.8 that the 
symmetry condition also holds in the recursive models. In both cases, the 
parameter 6 is the logit difference when the other item has been responded 
to with a 1 in comparison with a O. The parameter 6 that captures the 
dependence between Ypi and Yp i-I (Equation 10.6) equals the parameter 
that captures the dependence between Yp i-I and Ypi (Equation 10.8). 

The joint prob ability distribution for Yp derived from the conditional 
distributions of all items i in Equation 10.9 now reads as: 

Pr(Yp = Yp ) (10.10) 

exp (L:{=1 Ypi (()p - ßi) + L:j<k YpjYpk 6jk + ... + Ypl ... YPI 612 ... 1) 
L:s exp (L:{=1 Si (()p - ßi) + L:j<k Sj Sk6jk + ... + SI ... SI612 ... 1) , 

where the sum in the denominator is taken over all 21 possible binary 
vectors s = (SI, ... , Si, ... , SI) of length I. See Section 4.2.2 of Chapter 
4 for a similar formulation, with ws instead of 6s. This is the (random­
effects) loglinear specification of the joint distribution of the response vector 
(Bishop, Fienberg, & Holland, 1975; Cox, 1972). It is the random-effects 
specification because of the inclusion of ()p. In general, each of the 6s can 
be made a function of a random effect. In Equation 10.10, only 6i is a 
function of a random effect (6i = ()p - ßi), but not the pairwise and higher­
order dependence parameters. That is why Hoskens and De Boeck (1997) 
called this model (or submodels of it) the constant combination interaction 
model, with the term 'constant' used to contrast it with models in which 
pairwise and/or higher-order dependencies are either dependent on ()p or 
on some other random effects. The model from Equation 10.10 is the fully 
parametrized model and meaningful restrictions will be discussed below. 

Features of the nonrecursive model 

Starting from a model in which feedback loops between responses are al­
lowed, we end up with a different model than when feedback is not al­
lowed. First, in contrast with the recursive models, the joint prob ability 
of the nonrecursive model can be written in the loglinear form with a de­
nominator that does not contain the responses on other items. Second and 
unfortunately, for the nonrecursive case, things are not so straightforward 
as to include earlier responses as predictors in the predictor matrix W. 
The reason is that there is no factorization that results in a product of 
simple models, such as the one in Equation 10.1 for the recursive model. 
Therefore, an easy adaptation of the predictor matrix to achieve conditional 
independence is not possible. 
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The probability of a response pattern on a set of items can actually be re­
garded as a single response to a virtual polytomous item with 21 categories. 
In Chapter 3 of this volume we argued that a response to a polytomous 
item is a multivariate response; in this case we reverse the argument and 
state that under the nonrecursive model a multivariate binary response can 
be seen as a response to a polytomous item. A new random variable Y; 
is introduced to represent the response of person p on the virtual poly­
tomous item; Y; can take values ranging from ° to 21 - 1 so that each 
different response pattern receives a unique value (assume response pat­
tern (0, ... ,0) obtains value 0). Because the categories are not ordered, a 
baseline-category logit model (with ° as the baseline category) is the ap­
propriate choice for these data. Referring to Equation 3.14 from Chapter 3, 
we see that the components ofthe random-effects predictor matrix Zp (no­
tation from Chapter 3) consists of all possible sum scores on the individual 
binary items. The logit specific parameters ßim are decomposed according 
to Equation 10.10. 

As an example of such a model-translation exercise, consider a nonrecur­
sive model with two items. The probabilities of the four possible response 
patterns can be deduced from Equation 10.10: 

Pr(Ypl, Yp2) (10.11) 

1 + exp (Bp - ßl) + exp(Bp - ß2) + exp(2Bp - ßl - ß2 + 8)· 

Now define a new (virtual) item r;,* with four categories by assigning cat­
egory labels 0, 1, 2 and 3 to the response patterns (0,0), (1,0), (0,1), and 
(1,1), respectively. The three baseline-category logits, with category ° as 
baseline category, are then 

( pr(I,O)) 
log Pr(O,O) = Bp - ßl, 

( pr(O,I)) 
log Pr(O,O) = Bp - ß2, 

( pr(I,I)) 
= log Pr(O,O) = 2Bp - ßl - ß2 + 8. 

It can be seen that this is a baseline-category logit model with predictor 
matrices for person p: 

X p ~ 0 : ~J and Zp ~ 0 ) , 
using the notation from Chapter 3 (Xp for fixed effects, and Zp for random 
effects). 
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This shows that a nonrecursive model can be fitted with software for 
polytomous items with some restrictions on the item parameters (see also 
Hoskens & De Boeck, 1997). Note that the specification of X p and Zp 
can easily be understood within the framework of Thissen and Steinberg 
(1986). 

A drawback of analyzing data with nonrecursive models is that the num­
ber of possible response patterns (and therefore also the number of cate­
gories in the polytomous item) increases at an exponential rate. This makes 
the approach only feasible for modeling residual dependencies in clusters 
of a small size. 

Model restrietions 

The model in Equation 10.10 is the fully parametrized model, but simpler 
models can be obtained by setting some dependence parameters equal to 
zero or equal to each other. A common restriction is to set an third- and 
higher-order interaction parameters equal to zero (8ijk = '" = 812- .. [ = 0); 
this leads to a pairwise dependence model. For a model formulation of 
this kind based on the partial order of response patterns, see Ip, Wang, 
De Boeck, and Meulders (2003). A further step is to restrict all pairwise 
interaction parameters to be equal (8ij = 8 for an i and j); then we obtain a 
model in which the effect of the sum score of the remaining items on a given 
item is modeled (see also Prentice, 1988; Qu et al., 1987). The latter can be 
derived easily from Equation 10.9. If all dependence parameters equal zero, 
the nonrecursive model simplifies to a product of common Rasch models. 
Therefore, the Rasch model is nested within the nonrecursive model. 

Interpretational issues 

The same three interpretation issues as for the recursive models are relevant 
for the nonrecursive models. First, the exact interpretation of the depen­
dence parameters depends on the order of association that is captured. For 
two-way dependence parameters (e.g., 8ij ), we have to look at the change in 
odds for item i if the score on item j is altered keeping the response pattern 
for the remaining items constant. Consequently, the two-way dependence 
parameter expresses the conditional log odds ratio for the item pair i and 
j, given the responses on an other items (denoted as Ypt, l =1= i,j): 

I (pr(11!YPI )pr(00!YPI)) - 8·· 
og Pr(1O!Ypl)Pr(01!Ypl) - t). 

A three-way dependence parameter 8ijk is the difference in the conditional 
log odds ratios between items i and j if the response on item k changes 
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from 0 to 1: 

log (pr(ll!YPk = 1, Ypz)pr(OO!Ypk = 1, Ypz )) 
Pr(lO!Ypk = 1, Ypz)Pr(01!Ypk = 1, Ypz) 

-log (pr(ll!YPk = 0, Ypz)Pr(OO!Ypk = 0, Ypz )) = bijk. 
Pr(10!Ypk = 0, Ypz)Pr(Ol!Ypk = 0, Ypz ) 

Similar definitions apply to higher-order dependence parameters. Because 
the dependence parameters are defined in terms of conditional odds ratios 
and ratios of conditional odds ratios, they are not directly related to the 
odds ratios used to construct Figure 10.1, because the latter are marginal 
log odds ratios (marginal log odds ratios do not result in simple expressions 
in the nonrecursive model). 

Second, the nonrecursive models are nonreproducible, although they may 
be approximated quite weIl by a logistic model with an additional discrim­
ination parameter (see Tuerlinckx & De Boeck, 2001). Third, backward 
learning is still an issue in nonrecursive models. 

10.4 Random-effects models for residual 
dependencies 

Person-specific random effects were introduced to account for the depen­
dence between responses on different items due to clustering of items within 
persons. For this reason, it seems natural to include random effects as weIl 
if additional clustering in the data is present, far instance, due to the pres­
ence of testlets. Testlet random-effect models were proposed by Bradlow, 
et al. (1999) and by Scott and Ip (2002), and a simplified variant of their 
model will be discussed here. 4 

General model 

Assurne that the test of I items contains a single group of Itestlet items 
(Itestlet > 1) that are related in some way (e.g., because these are quest ions 
that foIlow the same reading paragraph) while the others do not belong to 
that group (and conditional independence can be assumed for them). Then 
we define an indicator variable XI+! for the single testlet (it carries the 
index I + 1 because there are I indicators for the single items and this 
predictor codes for the test let ): 

X = {I if item i belongs to testlet 1, 
, I+1 0 otherwise. 

4Note that we will use, unlike Bradlow et al. (1999), a model without a discrimination 
parameter and a logistic model instead of a probit model. However, the probit model 
will be discussed in Section 10.5. 



10. Models for residual dependencies 305 

From the definition of XI+l, we deduce it is an item predictor because its 
values change over items but remain constant over persons. The prob ability 
of a response Ypi now becomes 

P ('J. _ .) _ exp (Opo + Xi I+10pl - ßi) 
r L p• - Yp. - , 

1 + exp (OpO + Xi IHOpl - ßi) 
(10.12) 

or TJpi = OpO + Xi I+10pl - ßi, where Opl is the person-specific testlet effect 
which is normally distributed with mean 0 and standard deviation ao1 • 

The second formulation of the model (with TJpi) is used to show the simi­
larity and difference with the other random-effects models discussed in this 
volume. It is possible to allow for a covariance a~OOl between the random in­
tercept Opo (previously denoted by Op) and the testlet effect Opl, but that is 
not necessary and it will not be done in this chapter (therefore, we assurne, 
like Bradlow et al. that a~OOl = 0). As can be seen from the definition, 
the random-effects testlet model is a multidimensional model (see Chapter 
8 in this volume). In the presentation of the testlet model, we included 
only one additional random effect assuming there was only a single testlet. 
However, this does not have to be the case and more complicated clustering 
patterns can be taken into account. This will be illustrated with the verbal 
aggression data set in which the test lets are actually overlapping. 

In the application of the model to the verbal aggression data, we included 
separate random effects for the three Behavior Types (Curse, Scold, Shout), 
for the four situations (Bus, Train, Store, CaU) and for the two Behavior 
Modes (Want and Do). However, we did not include random effects for the 
Situation Type (Self-blame and Other-blame). Because there was also the 
random intercept Opo, the final model is a ten-dimensional one. Fitting such 
a model with a realistic number of quadrat ure nodes to approximate the 
integral over the random-effects populations would take a very long time. 
Therefore we reduced the number of no des to two per dimension. This is 
not a common practice and we do not advise its general use; it is done 
here only to illustrate the effects of including all these random effects while 
stilllimiting the computation time (though the PC with 1.8Ghz Pentium 
IV processor and 512 Mb RAM still ran for over 15 hours). To have a 
minimal check on our results, we computed the correlation between the 
Rasch estimates of the difficulty parameters and the estimates under the 
ten-dimensional model. The correlation proved to be sufficiently large (r = 
.999) for us to be satisfied. We have used the graphical technique presented 
in Section 10.2 to evaluate how well the ten-dimensional model captures 
the residual dependencies; the result is shown in Figure 10.2. It can be seen 
that the model-based plots are almost indistinguishable from the empirical 
plots. The model clearly takes into account a great deal of the remaining 
dependencies in the data. 

In our application of the random-effects testlet model, we did not allow 
for covariances between the random effects, which is a drawback of the ap­
proach. However, when covariances are present, the computational burden 
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FIGURE 10.2. Log odds ratio plot for the testlet random-effects model. Figures 
in row 1 contain dependencies between pairs of items; figures in row 2 contain 
average dependencies based on wanting and doing combined with behaviors; fig­
ures in row 3 contain average dependencies based on a common situation. The 
first figure in each row is derived from the data, the other four stern from data 
generated from the testlet random-effects model. 

becomes even greater due to the inflation of the number of parameters. 
Haaijer, Vriens, Wansbeek, and Wedel (1998) and Tsai and Böckenholt 
(2001) proposed to handle this inflation of number of covariance parame­
ters by assuming a factor-analytical model for the covariance matrix of the 
random effects which may reduce the number of parameters to some extent. 

Interpretation issues 

The interpretation of the model differs slightly from the interpretation of 
the conditional models, since the latter were fixed-effects models. Assurne 
two persons p and q with the same value for the random intercept Bpo = Bqo 
who respond to an item i from a test with one testlet. Then their odds of 
responding correctly differ with a factor exp(Xi 1+1 Bp1 -Xi 1+1 Bqd. Ifthe 
item does belong to the testlet (Xi 1+1 = 1), then the difference between the 
two test let specific trait values, Bp1 and Bq1 explains the difference in odds. 
On the other hand, if the item does not belong to the testlet (Xi 1+1 = 0), 
then there is no change in the odds. As for the conditional models, the 
random-effects test let model is nonreproducible. 

10.5 Marginal models for residual dependencies 

In many cases, the residual dependencies are considered to be a nuisance 
and the main interest lies in the marginal probability of I-response on a 
given item, Pr(Ypi = 1), as a function of Bp (the trait measured through the 
random intercept) or another characteristic (e.g., Gender or Trait Anger). 
However, under none of the previous models for residual dependencies are 
the marginal probabilities reproducible, which means that the univariate 
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marginal probability, Pr(Ypi = 1), is not a logistic function of Bp and the 
relevant item parameters. Moreover, the parameters pertaining to a sin­
gle item cannot be seen as item difficulties. An alternative is to build a 
model in which the univariate marginal probabilities are explicitly speci­
fied and unaffected by the association structure capturing the residual item 
dependencies. 

A possible model for the purpose of marginal modeling is the multivariate 
probit model (Ashford & Sowden, 1970; Chib & Greenberg, 1998; Lesaffre 
& Molenberghs, 1991) which is a multivariate extension of the well-known 
probit model and which has a long but rat her unnoticed history in statis­
tical practice. By considering a probit model, we step outside the realm of 
logistic models and model the probability of a I-response on an item with 
the probit or normal-ogive model (see Chapter 1). 

Consider two items and assurne, as in Chapter 1, that there exists a 
continuous latent random variable Vpi (i = 1,2) which is normally dis­
tributed with mean Bp - ßi and standard deviation ac;. The value ac; is a 
scale parameter that cannot be estimated from the data. It is set equal to 
1 for simplicity. Assurne also that there exists a threshold at 0 and that 
for Vpi > 0, aI-response follows and a O-response otherwise. Moreover, let 
Bp be the random effect associated with person p. All these assumptions 
are the same as in Chapter 1. It can be shown that Bp is responsible for 
a specific correlation structure between the responses in the multivariate 
probit model. Conditional upon Bp , the bivariate vector Vp is distributed 
as folIows: 

where N(IL,:E) stands for a bivariate normal distribution with mean vector 
IL and variance-covariance matrix :E. If we integrate over the normal dis­
tribution for the random intercept Bp (with mean 0 and variance a 2 which 
was denoted in earlier chapters by a~ or a~o)' then we obtain 

N (( =~~ ) , ( a 2
at 1 )) 

N (( =~~ ), (~ i)), 
where p = "X:1 and ßi = ".f.tl (the marginal prob ability of solving an 
item i). Thus the continuous latent data are distributed as a bivariate 
normal distribution with the correlation matrix R in equicorrelated form. 
The justification of this result can be found in any introductory book on 
linear mixed models (e.g., Verbeke & Molenberghs, 2000). It is the well­
known compound symmetry form from repeated observations ANOVA (see 
Chapter 1). 
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Because the latent continuous data Vpl and Vp2 are correlated, the dis­
crete responses YpI and Yp2 will be too. The marginal probability of a 
I-response is given by fF;bit (-ßi) , where f;;bit is the inverse probit link 
function (see Chapter 1). The model can be easily extended to more than 
two dimensions, but then one has to work with the multivariate normal 
density and cumulative distribution function. 

Assurne now that there exists additional clustering in the test (e.g., ques­
tions that are given after a common paragraph of text), then the random­
effects probit model as formulated here may leave residual dependencies 
unexplained. Suppose that we are in the general case of I items and that 
the first Itestlet 1 (with Itestlet 1 < I) items belong to a testlet and the 
remaining Itestlet 2 = I - Itestlet 1 items belong to a second testlet. Fur­
thermore, we assurne that we have already inserted a random effect in the 
probit model, leading to the model presented above (but generalized to I 
items). We will now include two additional uncorrelated random effects (}pI 

and (}p2, one for each testlet, both uncorrelated with the random intercept 
(}po and normally distributed with mean 0 but with variance T 2 . Then we 
find that the I x I correlation matrix R for the continuous latent variables 
becomes 

1 PI P2 P2 

R= PI 1 P2 P2 

P2 P2 1 PI 

P2 P2 PI 1 

now with PI = ((/2 + T 2 )j((/2 + T 2 + 1) for two items belonging to the 
same testlet and P2 = (/2 j ((/2 + T 2 + 1) for two items belonging to different 
testlets. Moreover, ßi = ßi j ( V (/2 + T 2 + 1). This model is a random-effects 
testlet probit model, with an additional random effect included for all items 
belonging to the same testlet. Actually, it is more closely related to the orig­
inal testlet model of Bradlow et al. (1999) than the logistic model proposed 
above because the model of Bradlow et al. was also a pro bit model. An im­
portant difference with the logistic testlet model is that for a probit model, 
the marginal prob ability of solving an item i belonging to a testlet but with 
the testlet random effect ((}pI or (}p2) integrated out, can be easily expressed 
as: 

'f/;i = ((}po - ßi)jVT2 + 1, 

with 'f/;i = f p robit(7r;i), and where the asterisk superscript indicates that 
the values are averaged over the test let random effect. The model is re­
producible because the marginal probabilities (7r;i) are still normal-ogive 
functions (independent of the association structure and how many items 
are involved) and ßi can be interpreted as the item difficulty. 
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Moreover, we can furt her marginalize over Opo in order to derive the 
marginal probability of a I-response in the population, Pr(Yi = 1), which 
is again a probit model (see e.g., McCulloch & Searle, 2001): 

with 'r/;; = !probit(7f;n, where the double asterisk superscript indicates 
that the values are averaged over the two random effeets. Hence, this for­
mula gives the proportion of I-responses in the population for a randomly 
selected individual. If a latent regression on person predictors was part 
of the random-effects model specification, then we can derive that the ef­
feet of the predictor is quantified by the parameter {}* = v<T 2:r2 +1 (the 
population-averaged regression coefficient, which is attenuated compared 
to the person-specific regression coefficient; see Diggle, Heagerty, Liang, & 
Zeger, 2002). 

As long as the structure on the correlation matrix R can be obtained 
from a random-effeets model (which implies that the covariance matrix 
of the random effects ~, is positive definite; see Section 4.6.3 in Chapter 
4), the multivariate probit model can be estimated with computer software 
that allows a random-effects probit analysis (e.g., the procedure NLMIXED 
from SAS). However, the multivariate probit model can be specified with 
any arbitrary correlation matrix, also one that cannot be obtained from a 
simple underlying random-effects model. For example, assume that similar 
items (with different item parameters) are assessed repeatedly over time. 
It may be reasonable to assume that the correlation between the latent 
continuous variables V s (conditional on Opo) will diminish with increasing 
time lag between the observation ocCasiOllS. The entry in the correlation 
matrix for the correlation between Vpi and Vpi' (conditional on Opo) has then 
the following form: pli-i'l. Fitting such models often requires specialized 
software. 

Despite the indisputable advantage of having a model which leads to re­
producible marginals, there are also a few important disadvantages to mul­
tivariate probit analysis. First, the nice interpretation of effects in terms 
of odds ratios, as we had in logit models, is unavailable in probit models. 
However, because both models are so similar, one could still defend the 
use of odds ratios as an approximate way of interpreting the probit-based 
regression coefficients. A second and more serious drawback is that in a 
frequent ist inferential framework, the multivariate probit model is com­
putationally a very demanding model, certainly if the number of items 
becomes large (the evaluation of a multivariate normal cumulative distri­
bution funetion is a very computationally intensive task) or if the model 
cannot be reformulated as a random-effects model. In the latter case, the 
best way to make inferences about the model is to resort to a Bayesian 
approach (Chib & Greenberg, 1998). 
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10.6 Concluding remarks 

All methods presented in this chapter try to account for residual depen­
dencies in the data that are not captured by a conditional independence 
model. Each method is based on different assumptions and none of them 
can be labeled as uniformly the best method in all situations. In this sec­
tion we discuss the assets and drawbacks of each method and present some 
generalizations. 

The conditional methods model the probability of a certain response on 
the current item given the responses on all other items or on some subset of 
the other items. Within the class of conditional models, we distinguished be­
tween recursive and nonrecursive models; both techniques use fixed-effects 
parameters to account for the dependencies (for random-effects versions, 
see Chapter 7). Which one of these two can be applied in a given situa­
tion depends in the first place on whether there is an apriori ordering of 
the items or not. The recursive models are certainly simpler to apply since 
they only require the adaptation of the predictor matrix by including the 
responses on the previous items, as shown in Chapter 7. Once that task 
is completed, we are back in the conditional independence situation and 
the traditional estimation tools for conditional independence models can 
be applied. However, an ordering may not be present. When no 'natural' 
ordering is available, making an arbitrary choice for a certain ordering and 
applying a recursive model is probably not a good idea because a different 
ordering would result in a totally different model. Therefore, if no ordering 
is available, it might be more reasonable to apply a nonrecursive model. 

The greatest dis advantage of the nonrecursive conditional models is that 
ultimately the joint probability distribution of the responses conditional on 
the random effect has to be available. If the number of items that are sus­
pected to show residual dependencies is not too large, this is no problem. 
However, if a testlet contains for instance 10 binary scored items, the testlet 
is a virtual polytomous item with 1028 categories which is impractical to 
fit with software for polytomous data. Moreover, it is advisable to restrict 
the number of parameters in some way (but this is also true for the recur­
sive models). There have been some suggestions not to use the orthodox 
maximum likelihood estimation procedures for nonrecursive models with 
many items but instead to apply pseudo-maximum likelihood procedures 
which are based on the direct product of the conditional distributions in 
Equation 10.9 (see Arnold et al., 1999; Connolly & Liang, 1988). However, 
this approach has not yet been studied thoroughly in terms of bias and loss 
of efficiency of the parameter estimates. 

The random-effects approach is very straightforward to apply in the sit­
uation where no apriori ordering exists. It does not suffer from problems 
with large cluster sizes, but it has difficulties with a high number of clus­
ters because then the dimensionality of the model may become practically 
unmanageable. A huge drawback of both random-effects and conditional 
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models is their lack of reproducible univariate marginals. If one is really in­
terested in modeling the probability of a correct response and considers the 
residual dependencies as a nuisance, it is unfortunate that the marginal in­
ferences from a random-effects model (as displayed in the right-hand branch 
of Figure 4.4) are strongly influenced by the adopted association structure. 

The multivariate probit model has reproducible marginals which is its 
major advantage. However, the model itself is not a standard model to 
apply and easy-to-use software is not yet available, certainly not if one 
wants to fit the more complicated and interesting variants (otherwise, one 
could use the random-effects logistic testlet model as weIl). Moreover, the 
model is computationally hard to handle. 

We conclude the chapter with three remarks. First, the different models 
proposed in this chapter can, of course, be combined in various ways. In­
stead of having pure recursive and nonrecursive models, one may define an 
intermediate class of models. For example, if up to a certain item i there is 
an apriori order and no feedback loops, but from then on there are feedback 
loops indeed, one can construct, for the second set of items given the first, a 
nonrecursive model and for the first set a recursive model, and both can be 
combined. Another example is when it would make sense to combine recur­
sive models with random-effects testlet models to model learning between 
testlets. Still another application of a combined approach is to make the 
fixed-effects dependence parameter in the conditional dependence models 
random over persons (Smits & De Boeck, 2003). 

Second, we have studied exclusively the case of positive residual depen­
dencies, that is the case that the data show more dependencies than the 
model can account for. All approaches are suited for this type of resid­
ual dependencies. However, negative residual dependencies mayaIso occur 
(Tuerlinckx, De Boeck, & Lens, 2002). In such a case, the random-effects 
testlet model is not an appropriate model anymore. 

Third, the residual dependence techniques can be applied to many mod­
els described in the previous chapters. For instance, we have limited our 
discussion to the Rasch model for binary data, but the generalization to 
polytomous data, to multi dimensional models and to the inclusion of other 
types of predictors is relatively straightforward. See for example Hoskens 
and De Boeck (2001) for a generalization of a conditional model to the mul­
tidimensional case. As illustrated in the Exercises, a polytomous extension 
and a DIF analysis are also possible. 

10.7 Exercises 

1. A commonly used index for residual dependencies is Yen's Q3 mea­
sure (Yen, 1984). For an item pair i and i', Q3 is defined as the correla­
tion between the residuals on the two items. The residuals are defined as 
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rpi = Ypi - Pr(YPi = 1) and rpi' = Ypi' :.- Pr(YPi l = 1), where Pr(ypi l = 1) 
stands for the estimated probability of a correct response for person p on 
item i', so that i i=- i'. Computing the correlation between the rpis and the 
rpi/s gives the Q3 for pair (i, i'). Construct a similar plot as in Figure 10.1 
using the Q3 instead. 

2. Construct a recursive model for five items with the usual two-way de­
pendencies, as weIl as a three-way dependence (that is, specify Wp and 0). 
How should three-way dependence parameters be interpreted? 

3. Show that there is no reproducibility in the constant combination in­
teraction model. 

4. Show that there is no reproducibility for the random-effects testlet model. 

5. Suppose there is only one testlet of Itestlet (Itestlet < I) items. A mar­
ginal probit model with a random intercept and a single random testlet 
effect is defined. What is the structure of the marginal correlation matrix 
for the continuous latent random variables Vpi and how are the correlations 
defined? 

6. A test contains four items and it is known that items 3 and 4 can be 
modeled with a constant combination interaction model while learning, as 
defined in Equation 10.4, takes place from item 1 up to the set of the final 
two items. SchematicaIly, this can be displayed as follows: 

Set up a model for this data structure. 

7. A short test of five similar items is given to normal children and to 
children with an attention deficit disorder. From previous research it is 
known that both groups learn while taking the test but it is hypothesized 
that the attention deficit has a negative effect on learning. Set up a model 
to test this hypothesis. Assume that the number of previous correct re­
sponses drives the learning process. Show the design matrices for anormal 
and for a disabled child. (This is a model for DIF in the learning parameter.) 

8. How would you extend the random-effects model for residual dependen­
eies with binary scored items (Equation 10.12) to the case of polytomous 
data? Hint: work with cumulative logits. 
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11.1 Introduction 

In all models discussed thus far in this volume, it has been assumed that 
the random person weights (Jp follow a normal distribution with mean 0 
and covariance matrix ~: 

(Jp N(O, ~). 

In most ofthese models the vector (Jp reduces to a scalar since only one ran­
dom weight is considered (e.g., the random intercept in the Rasch model). 
However, there are situations in which the normality assumption is not 
justified. When the random weights come from two or more populations, 
and population membership is known, this feature can be incorporated into 
the model, as has been shown in earlier chapters. However, if population 
membership is unknown (i.e., latent), it is not straightforward to incorpo­
rate this into the generalized linear mixed model framework discussed thus 
far. Models which include latent population membership are sometimes re­
ferred to in the psychometrie literature as mixture models (e.g., Mislevy & 
Verhelst, 1990; Rost, 1990). 

Such models have a moderately long history in educational and psycho­
logical contexts, with such varied uses as classification into psychological 
diagnostic groups (Waller & Meehl, 1998), personality assessment (Reise 
& Gomel, 1995), analysis of strategy use in problem-solving (Mislevy & 
Verhelst, 1990), detection of random guessing behavior in multiple choice 
testing (Mislevy & Verhelst, 1990), the use of cognitive strategies (Rijmen 
& De Boeck, 2003), speededness effects in time-limit tests (Bolt, Cohen, & 
Wollack, 2002) and developmental stages in task solution (Wilson, 1984, 
1989; Draney, 1996). 

When random weights are drawn from two or more latent populations, 
and these populations show systematic differences in their item response 
behavior, it is important to include this feature in the model. When it is 
not included, this can affect the estimation of other elements of the model, 
including the item slopes (e.g., Wilson, 1989; Yen, 1985). In addition, there 
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may be much to be learned from a substantive point of view by examining 
person membership in latent populations. 

The feature that the models described in this chapter have in common is 
that persons are classified into groups, and these groups are latent, rather 
than observed. The earliest such models were latent class models, the ba­
sic structure of which is summarized in Lazarsfeld and Henry (1968), al­
though there have been many extensions and specifications of these models 
designed to accommodate the specifics of a given situation (e.g., Croon, 
1990; Dayton & Macready, 1976; Formann, 1992; Goodman, 1974; Haber­
man, 1979; Heinen, 1993; Langeheine, 1988; Meulders, De Boeck, Kuppens 
& Van Mechelen, 2002; Vermunt, 1997). One of the major features of latent 
class models is that there is no variability on the person metric (i.e., on 
the intercept) within a given latent class. Rost (1988) gives as the defin­
ing feature of latent class models the characteristic that all persons within 
a latent class have the same probabilities of answering a set of items cor­
rectly, and thus (if considered in an educational context) the same ability or 
proficiency. Each class is generally represented by only one set of response 
probabilities. 

However, it may not always be the case that all persons within a la­
tent class have a common set of response probabilities; there may be more 
variation in person responses than can easily be accommodated by such a 
model. Other approaches have been taken; for example, Gitomer and Ya­
mamoto (1991), in a model they name the 'hybrid model,' assign persons 
who do not match one of the latent classes within the model to a 'catch-all' 
latent trait model. More generally, in the last 20 years, a number of models 
have been developed which are combinations of latent trait and latent class 
models, such that a latent trait model holds within each latent class. 

Mislevy (1984) explored the possibility that the observed population 
could be composed of two or more latent populations, each with its own 
distribution for the random intercepts (e.g., each latent population has a 
normal distribution with its own mean and variance). 

The saltus model (Wilson, 1984, 1989; Mislevy & Wilson, 1996; Draney, 
1996) is a simple example of a mixt ure model that was originally formulated 
to describe Piagetian-like developmental hierarchies (the word 'saltus' is 
Latin for 'leap'). It extends the Rasch item response model to development 
that occurs in discrete stages or levels. In this model there are different 
classes or developmental stages in the population to be measured. Items 
are assumed to represent each one of these stages. Items representing a 
stage or class are constructed such that only persons at or above that 
stage are fully equipped to answer these items correctly, and once a person 
enters the developmental stage with which items are associated, that person 
gains a substantial advantage in answering those items. The saltus model 
assumes that all persons in a group answer all items in a manner consistent 
with membership in that group, but persons within a group may differ by 
proficiency. 
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Mislevy and Verhelst (1990) developed a mixture LLTM model that is 
an extension of Fischer's (1983) linear logistic test model (LLTM). They 
state that within each latent dass, the item parameters may be expressed 
as a function of some smaller number of more basic parameters that reflect 
the effects of salient characteristics of the items, as in the LLTM. In their 
examples, they assume that each person is applying one of several possible 
solution strategies to all items in an item set, and uses the same strategy 
for all items. Substantive theory must associate the observable features 
of the items with the probability of success for members of each strategy 
group. It is not necessary for each of the latent dasses to be governed by 
aLLTM. The model was originally expressed in such general terms that 
more general item response functions can be used in place of the LLTM 
model that is discussed in the artide. Also, Mislevy and Verhelst (1990) 
discuss the addition of a group of random guessers, a group for which the 
probability of a correct response is a fixed constant, generally the reciprocal 
of the number of response options. 

A well-known mixt ure model in the psychometrie literature, is the mixed 
Rasch model described by Rost (1988, 1990). This model assumes that the 
population being measured is composed of two or more latent subgroups, 
which are mutually exdusive and exhaustive. Within each of these sub­
groups, a Rasch model holds across all items. In this model, there is no 
particular structure for the item parameters in different groups. As Rost 
states, " ... No apriori hypotheses about item difficulties within the latent 
dasses are needed" (Rost, 1990, p. 273). The model provides estimates of 
both item difficulty for each item and (in a second step) person proficiency 
for each person within each latent dass, as weIl as the proportion of the 
sampie that falls within each dass. Note that the dass-specific estimate for 
a person's proficiency is only meaningful if dass membership is likely. 

11.2 Mixture model 

11.2.1 Formal presentation 

We will now formulate the previously discussed models by incorporating 
finite mixtures of normal distributions. We assume that 

R 

(Jp rv L TCrN(J.tr, :Er), (11.1) 
r=l 

where R is the number of mixt ure dasses. The probability of belonging to 
dass r is TC r, such that ~~1 TC r = 1. Further , J.tr refers to the means of 
the random effects in the rth dass, and :Er is the covariance matrix of the 
random effects in the rth dass. Note that the elements in J.tr are dass­
specific deviations from the corresponding mean weightsj this to ensure 
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that the distribution for the random person weights Op remains centered 
around zero. Denoting a mean weight by ß, ßr = ß + JLr then refers to a 
dass-specific mean weight. 

Let the density of a multivariate normal distribution with mean IL and 
covariance matrix :E be denoted by cfJ(.). Denoting Ypi as the response of 
the pth person on the ith item and the vector Yp = (Ypl, . .. , YpI)' as the 
vector of the observed responses of the pth person (p = 1, ... , P), the joint 
density function of Yp can then be written as 

when no mixture distribution is used for the random efIects (thus, Op rv 

N(O, :E)). Using a mixt ure distribution for the random efIects in Equation 
11.1 and using cfJr(.) to denote the density of a multivariate normal distrib­
ution in dass r with mean ILr and covariance matrix :Er, the joint density 
function of Y p becomes 

(11.2) 

R 

= L 'Trr!pr(Yp)· 
r=1 

It can be seen that the density function of Yp comes from a mixt ure 
of densities with dass probabilities 'TrI, .•. , 'TrR and dass densities !pr(Yp). 
These densities are the probabilities of a correct response in a specific 
dass and can be described by models such as the Rasch model, the LLTM 
model, etc. To see better the relation with the models described in the 
other chapters of this volume, we express the model for the case of the 
random intercept (a random intercept per dass), and as if we knew the 
dass membership: 

'T/pi = L CXpr((}pr - ßir), 
r=1 

where 'T/pi is the logit of the probability of al-response for person p (be­
longing to dass r) and item i, where cxpr = 1 if person p is a member of 
dass r, cxpr = 0 otherwise (:E~I cxpr = 1); where (}pr is the dass-specific 
random intercept; where ßir is the dass-specific difficulty. However, the cxs 
(also called latent observations) will not be estimated but instead the dass 
probabilities function as parameters, as can be seen in Equation 11.2. 
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Let us now write 'Tr = ('iTI, ... , 'iTR)', the veetor of all class probabilities 
and ß, the vector eontaining the class-speeifie as weH as the class-invariant 
predictor effeets. Further, 1/J = (ß', vee(~)')' where vee(~) is a veetor with 
all upper-triangular elements of ~I, ... , ~R staeked on top of eaeh other 
and e = (1/J', 'Tr')', the veetor of aH parameters in the model. The following 
loglikelihood has to be maximized: 

(11.3) 

Owing to the analytieal eomplexity, numerieal maximization of this log­
likelihood is not straightforward. Therefore, this loglikelihood will be max­
imized using the Expectation-Maximization algorithm (EM), introdueed 
by Dempster, Laird and Rubin (1977), whieh is typieally used for mixt ure 
problems. A deseription of the EM algorithm - with referenees to the SAS 
maero we will use - is given in Seetion 11.6. How to obtain standard errors 
and empirie al Bayes (EB) estimates is diseussed in the Seetions 11.7.2 and 
11.7.3. 

11.2.2 Typology 01 mixture models 

Applieation of a mixt ure model is based on an assumption of R classes, but 
different values of R may be used. For eaeh given number of classes one 
ean then 'detect' what kind these classes are. The classes ean be defined 
on one or more weights of the item predietors (depending on the dimension 
of the veetor ()p in Equation 11.1). A simple typology of mixture mod­
els will be obtained by eonsidering the number of weights that are used 
for the definition of the classes and by eonsidering different possibilities 
for the eovarianee matrix ~r. This yields simple latent class models, as 
weIl as models with different class-specifie weights and class-speeifie eovari­
anee matrices. Also, oversimplistie situations will be eovered, sinee they 
enlighten the formal framework. 

The typology will be illustrated using a hypothetieal analysis of the ver­
bal aggression data set whieh is deseribed in Chapter 1. Suppose a very 
simplistic LLTM for this data set, where besides the constant predietor, 
the only other predictor is Situation Type. The design matrix X then 
eontains only two eolumns, one eolumn eontaining the eonstant predietor 
and the other eolumn eontaining a dummy variable having value 1 for the 
other-to-blame items and value 0 for the self-to-blame items. 

No variability within classes 

The (over )simplistic situation of no variability within classes arises when 
there is only one weight ()p, following a mixt ure distribution with the vari-
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(a) (b) 

(c) 

FIGURE 11.1. No variability within classes: (a) one-class solution, (b) two classes 
defined on one weight, (c) two classes defined on two weights. 

anee in eaeh dass equal to zero: 

R 

()p "-' L 7rr N (Mr, 0) . (11.4) 
r=l 

This situation eorresponds to a simple latent dass analysis with R latent 
dasses of persons and no variability between the persons within eaeh latent 
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class. Strictly speaking, since the class-specific normal distributions have 
no variance, the weight ()p follows a mixt ure of R degenerate distributions 
or has a discrete distribution with R support points. Alternatively, one can 
say that the weight ()p is class specific. 

A first situation is when ()p refers to an intercept, such that the distinct 
classes only differ in a general level of ability or propensity. Of course, items 
can differ in prob ability as a function of chosen predictors (item indicators 
or item properties), but the weights for these predictors are the same in 
the R classes. For example, the mixt ure distribution in Equation 11.4 can 
be used for R classes in the data, each class with its own verbal aggression 
level, where all persons within a class have the same level. Of course, ()p can 
also refer to the weight of a predictor with values varying between items 
(e.g., Situation Type). 

Using two weights to define the classes, instead of one weight, yields the 
following extension of the mixt ure in Equation 11.4: 

J.LOr 
J.LIr 

(11.5) 

J.LOr is the class-specific deviation from the intercept and J.LIr is the class­
specific deviation from the mean slope of the first item property. The class­
specific intercept ßOr and the class-specific slope ßIr are then given by 
ßOr = ßo + J.LOr and ßIr = ßI + J.LIr· The covariance matrix :E is restricted 
to contain only zeros. 

Figure 11.1 represents model types without variability within the classes, 
where the two weights are an intercept and the slope of an item property. 
Model type (a) represents a one-class starting point, where all persons have 
the same verbal aggression level and the same weight for the item property 
Other-to-blame. As a consequence, two probabilities will occur within the 
class: one for items relating to a self-to-blame situation and another relating 
to an other-to-blame situation. This is also true for the model types (b) and 
(c). Model type (a) implies that neither the propensity nor the sensitivity to 
the Other-to-blame property is used to distinguish between persons. Model 
type (b) corresponds to the mixt ure in Equation 11.4 with the two classes 
only distinguished by the verbal aggression level, whereas in model type 
(c) classes are also different with respect to the weight of Other-to-blame, 
in line with Equation 11.5. Panels (b) and (c) correspond to latent class 
models discussed in the Introduction. 

In these three model types, persons within a class are homogeneous. 
These models would be oversimplistic in many domains, where differences 
between persons cannot be captured by such a limited set of fixed values. 
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(a) 
(b) 

(c) 

FIGURE 11.2. Variability in one weight within classes: (a) one-class solution, (b) 
two classes defined on one weight, (c) two classes defined on two weights. 

Variability within classes (variability in one weight) 

Considering one weight ()p, and allowing variability between persons within 
a dass results in 

R 

()p rv L 7rr N (fJn er;) . (11.6) 
r=l 
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A subscript r is added to the variance, indicating that the variability of the 
random effect can differ between the classes. A simplified model is obtained 
when this variance is restricted to be equal in all R classes. Applied to the 
verbal aggression data set, this model type is displayed in panel (b) of 
Figure 11.2, where the two classes differ in mean verbal aggression level, 
and persons within a class can also have different levels of verbal aggression. 
This was the situation explored by Mislevy (1984). As a comparison, panel 
(a) of the same figure represents the standard LLTM, which is a one-class 
model with persons having different levels of verbal aggression. 

When two weights are considered for the definition of the classes, a com­
mon class of models is defined by 

(11. 7) 

The mixture in Equation 11.7 implies that classes differ in mean level of two 
weights and that there is variability in one weight (the intercept) among 
persons within a class. As an example, classes not only differ in mean 
level of verbal aggression but also in mean weight of Other-to-blame. In 
other words, the effect of Situation Type is class specific. Moreover, within 
a class there is variability in verbal aggression level, but the weight of 
Situation Type is the same for all persons within a class. This situation is 
displayed in panel (c) of Figure 11.2. Both the saltus model (Wilson, 1984, 
1989; Mislevy & Wilson, 1996; Draney, 1996) and the LLTM-based mixture 
models described by Mislevy and Verhelst (1990) correspond to this panel. 
When replacing the item property Other-to-blame with item indicators, the 
panel also illustrates the general mixt ure model described by Rost (1988, 
1990). Of course, in the latter case, it will be a high-dimensional figure, one 
dimension for each item. 

Variability within classes (variability in two weights) 

A further extension is the most general case where there are no zero vari­
ances in :E, such that there is variability in both weights: 

(11.8) 

These model types are described in Figure 11.3. Panel (a) illustrates the 
one-class solution. Panels (b) and (c) describe the mixture model extensions 
where the classes differ in mean level of one and two weights, respectively. 
The models illustrated by the latter panels are more complex than most 
mixt ure models currently used in the educational and psychologicallitera­
ture. 

All discussed model types are summarized in Table 11.1 with a reference 
to the Figures. The slope in the examples concerns Other-to-blame. 
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(a) 
(b) 

(c) 

FIGURE 11.3. Variability in two weights within classes: (a) one-class solution, 
(b) two classes defined on one weight, (c) two classes defined on two weights. 
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TABLE 11.1. Overview of model types presented in Figures 11.1, 11.2, and 11.3. 

Number Figure Weight(s) used to Variability 
of classes define classes within classes 

1 Fig. 11.1 (a) no 
2 Fig. 11.1 (b) intercept no 
2 Fig. 11.1 (c) intercept and no 

one slope 

1 Fig. 11.2 (a) in intercept 
2 Fig. 11.2 (b) intercept in intercept 
2 Fig. 11.2 (c) intercept and in intercept 

one slope 

1 Fig. 11.3 (a) in intercept and 
one slope 

2 Fig. 11.3 (b) intercept in intercept and 
one slope 

2 Fig. 11.3 (c) intercept and in intercept and 
one slope one slope 

11.3 Applications of mixt ure modeling 

In this section some specific examples will be given of the discussed typol­
ogy of mixtures. The results presented are obtained with a SAS macro for 
mixture modeling. A previously discussed LLTM analysis (see Chapter 2) 
of the verbal aggression data will serve as a starting point. Briefly, in this 
LLTM, three item properties (Situation Type, Behavior Type and Behavior 
Mode) were used, which were coded into four X-variables, complemented 
with the constant predictor (Xo). Situation Type has been defined using a 
dummy variable (Xt), with Other-to-Blame coded as 1, and Self-to-Blame 
as O. Behavior Type has been coded with two contrasts, one (X2 ) com­
paring Curse and Scold with Shout and another (X3 ) contrasting Curse 
and Shout with Scold. Behavior Mode has been coded as a dummy (X4 ), 

with Do coded as 1, and Want as O. Note that the order of the predictors 
is different in the other chapters. The results of this analysis will be re­
ferred to as the one-class model (see Figure 11.2a). Results are obtained 
using nonadaptive Gaussian quadrature with 20 quadrature points in the 
NLMIXED procedure of SAS. As one can see in Table 11.2, the results are 
the same as reported in Chapter 2. Note that we do not follow the common 
practice of expressing the effects from the item side in a negative way (see 
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Chapter 2), but instead these effects will be expressed in a positive way 
using a plus sign for the effects of the item properties. 

TABLE 11.2. Estimates for the one-dass LLTM model, and for three two-dass 
LLTM models (verbal aggression data). 

One-class Two-class Two-class Two-class 
model model A model B model C 

Deviance 8232 8231 8158 8160 
AIC 8244 8247 8176 8176 
BIC 8266 8277 8210 8206 

ßo -.31(.09) -.32(.06) 

ß01 .20(.10) -.17(.12) 
ß02 -.83(.11) -.41(.08) 

ßl 1.03( .06) 1.03(.05) 
ßl1 2.47(.15) 2.64(.16) 

ß12 .50(.10) .50(.09) 

ß2 1.36( .05) 1.36(.03) 1.40(.03) 1.41(.03) 

ß3 .70(.05) .70(.04) .72(.04) .72(.04) 

ß4 -.67(.06) -.67(.04) -.69(.04) -.69(.04) 

0"2 
0 1.86(.20) 1.53(.16) 1.30(.10) 1.35(.10) 

1fl .52(.07) .30(.05) .27(.04) 
1f2 .48(.01) .70(.05) .73(.04) 

Note: ßo to ß4 are the overall fixed effects of the item predictors; ß01 and ß021 and ßll 

and ß12, are the dass-specific weights; 0"6 is the variance of the intercept; 71"1 and 71"2 are 
the two dass probabilities. 

An extension of this LLTM model would be to allow different classes 
of individuals based on their verbal aggression propensity. As a starting 
example, we will investigate the hypothesis that there are two classes with 
different levels of propensity and with an equal variance within each class 
(i.e., 0"5)' In the remainder, this model will be referred to as two-class model 
A (see Figure 11.2b). The syntax of a SAS macro to fit the two-class model 
A is presented in Section 11.5. 

The deviance of the two-class model A was equal to 8231 and the maxi­
mum likelihood estimates can be found in Table 11.2. Note that likelihood­
ratio tests may not be used to compare the one-class with the two-class 
model, because of boundary problems (Böhning, 1999). Model comparison 
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can be based on other criteria such as the AIC and BIC. Using these crite­
ria, there is no need to reject the one-class model and accept this two-class 
model. In other words, a normal distribution as a model for the variability 
in propensity should not be replaced by a mixt ure of two normals. 

Note that a special case arises when an analysis with homogeneous classes 
is used to capture the variability in propensity (Haertel, 1990). Thus, in­
stead of using one normal distribution for propensity, two or more homo­
geneous classes are assumed, each with a specific level of propensity, but 
without within-class variability. To fit such a latent class model with the 
SAS macro, a class-specific weight must be specified, without using the 
RANDDMSTAT statement. The latent classes can be defined on the intercept 
and/or on other weights. Fitting such a latent class model on the example 
data set yields less parsimonious results compared to the one-class model. 
Indeed, we found that a (too) high number of classes are needed to mimic 
the variability in propensity. Results of these analyses are not reported. 

FIGURE 11.4. Distribution of weights used to define classes in the two-class 
model B (verbal aggression data). 

In the two-class model B, the classes are not only defined on the intercept 
(as in the A variant), but also on the weight of Situation Type (see Figure 
l1.2c). Clearly, this model yields an improved fit. The deviance decreases 
to 8158 and also the information criteria yield lower values compared to the 
one-class model and the two-class model A. The estimates can be found in 
Table 11.2. The distinction between the two obtained classes can be seen in 
Figure 11.4. The small class represents approximately 30%, the larger class 
70%. Figure 11.4 clearly shows that a major distinction between the two 
classes is given by the effect of Situation Type. Previous analyses showed 
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that verbal aggressiveness is higher when others are to blame, compared 
with situations in which one should blame oneself. In the smaller dass this 
difference is much larger than in the bigger dass (2.47 vs .50). This means 
that there are two types of people: those who do not differentiate very much 
between other-to-blame situations and self-to-blame situations and those 
who are dearly more verbally aggressive when others are to blame. Gender 
is a candidate covariate to explain this distinction for example because one 
might expect men to be more aggressive than women when others can be 
blamed. In other words, the heterogeneity detected by the mixt ure model 
could reflect the 'forgotten' covariate Gender. However, the distribution of 
Gender is similar in both dasses (26% of the males and 25% of the females 
are dassified in the small dass), indicating that the dass distinction in the 
effect of Other-to-blame cannot be captured by Gender. 

With respect to propensity, the dasses in the two-dass model B do not 
seem to differ much (-.17 vs -.41). Therefore, a two-dass model with a 
common level of propensity, the two-class model C has also been fit, yielding 
a deviance of 8160. Since the deviance increased only a little, and the AlC 
and BIC values are equal or better, respectively, one may condude that 
different intercepts are not needed for the two dasses. 

The resulting model is in fact equivalent with the saltus model (Mis­
levy & Wilson, 1996; Wilson, 1989), apart from the fact that in the saltus 
model each item has its own effect. Let us ass urne that a subset of items 
increases or decreases in difficulty from one latent dass to the other. This 
is equivalent to induding an item property for the subset, with a weight of 
zero in one dass and a nonzero weight in the other, while the distribution 
of the random intercept (the propensity) is the same. In the example, the 
other-to-blame items 'make a leap' from the second and larger dass to the 
first and smaller dass (from .50 to 2.64, the values of ß1l and ß12 for the 
two-dass model C in Table 11.2). 

It is dear that the discussed analysis serves only an illustrative purpose. 
Many furt her extensions are possible. The number of dasses could be in­
creased, dass-specific variances could be assumed whenever variability is 
allowed and other weights could be induded in the definition of the dasses. 

11.4 Concluding remarks 

There are many areas of education and psychology in which mixt ure models 
could conceivably be useful; certainly it is not difficult to imagine situa­
tions in which two or more populations might respond to an instrument in 
predictably different ways. Although such populations may often be differ­
entiated based on observable characteristics (gender, socioeconomic status, 
school district), there are surely times when this is not the case. And yet, 
there are relatively few applications of the models discussed in the Intro-
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duction of this chapter, even in areas of education and psychology, in which 
they would be highly relevant. 

One likely reason for this is the complexity of the models themselves. As 
mixt ure models are not members of the standard families of item response 
models (for example, they are not exponential-family models), their use is 
doubtless constrained by the lack of widespread existing estimation soft­
ware. In this chapter we have presented a macro suitable to fit a variety of 
mixt ure models within the SAS framework. Of course, other software pro­
grams exist for specific models: for example, WINMIRA (von Davier, 2001) 
for Rost's mixed Rasch model, SALTUS for the saltus model (Draney & 
Wilson, 1997). There also exist software programs that fit a variety of mod­
els, such as REM (Vermunt, 1997), and latent GOLD (Vermunt & Magidson, 
2000). 

As seen in the examples, mixture models can be tailored to reflect the 
complexities of a particular experimental design, psychological theory, or 
instrument structure. Explorations based on different parametrizations can 
lead us to interesting conclusions about subgroups in the dataset. In this 
example, although the two groups in the dataset had similar overall levels 
of aggression, the smaller group was much more likely to be aggressive when 
someone else was to blame than when they themselves were to blame, while 
the difference was not as extreme in the larger group. Further exploration 
of the characteristics of the persons classified into the two groups might 
lead to new understandings about verbal aggression and why people react 
as they do. If the classes can be linked to person properties this contributes 
to the explanatory purpose of modeling. As an example, the detected het­
erogeneity in effect of the Other-to-blame property could perhaps be linked 
to another property besides Gender. 

Analyses that are more confirmatory than those reported here would 
also be possible if we had started with specific theories about the latent 
populations in question, and their relationships to the different item types 
or item characteristics. This is often the case in fields such as cognitive 
development. 

The use of SAS, and the macro described in Section 11.7.1, open new 
avenues of exploration using mixture models. Complex models can be de­
veloped, such as those in which both overall proficiency, and the particular 
effect of various item characteristics, differ not only between populations, 
but within them as weIl (as displayed in the panels band c of Figure 11.3). 

11.5 Software 

The macro we have used in the application is a SAS macro for nonlinear 
and generalized linear mixed models with finite normal mixtures as random­
effects distribution. The macro can be downloaded from http://www . med. -
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kuleuven. ac. be/biostat/research/ software. htm. Details of this macro 
can be found in Spiessens, Verbeke, and Komarek (2004). The model that 
is estimated is a LLTM with a mixture of two normals for the intercept 
(the two-dass model A of Table 11.2). The code used far the example is 
discussed in two steps. 

LLTM with a mixture of two normals for the intercept (verbal 
aggression data) 

Code first step 

data startv; 
input parameter$ estimate; 
cards; 
betaOl -1 
beta02 -2 
betal 1.028 
beta20.703 
beta3 1.362 
beta4 -0.672 
s2 1.5 

options nonotes; 
run; 

Comments first step 

A data set containing starting values for the different parameters in the 
model has to be created. Starting values were taken from the one-dass 
model (see Table 11.2), except far 0"3 which was started a bit sm aller than 
1.86 because it represents the variance within a dass and not the total 
variance. 

Code second step 

%HetMlmixed(DATA=aggression_dich,OPTIONS=%str(qpoints=5 noad) , 
PARMS = startv, 
SUBJECT = idnr, 
RESPONSE = y, 
COMPSPEC = xO , 
PROGRAMSTAT = 
%str(eta = theta*xO + betaOl*xOl + beta02*x02 + 
betal*xl + beta2*x2 + beta3*x3 + beta4*x4; 
ex = exp(eta); 
p = ex/ (1 +ex) ; ) , 

MODELSTAT = %str(y ~ binary(p)), 
RANDOMSTAT = %str(theta ~ normal(0,s2)), 



G=2, A=1e08, DECISION=2, STOPRULE=1e-08, 
MAXITER=1000, ENDPOST=poster, EB=ebest, 
EBmean=%str('beta01' ,'beta02')); 

Comments second step 
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1. In the DATA statement, the name of the dataset is specified. 
2. The OPTIONS statement can be used to specify options for NLMIXED. 
Here, we have used nonadaptive Gaussian quadrature with 5 quadrature 
points to speed up the algorithm. 
3. The data set containing the starting values is given in the PARMS state­
ment. 
4. The variable containing the identification numbers of the persons (idnr) 
is put in the SUBJECT statement. 
5. The RESPONSE statement contains the name of the response variable (y). 
6. The class-specific effects that are used in the model are specified in the 
COMPSPEC statement. In this case, xO is specified, since classes will be de­
fined only on the intercept. 
7. The PROGRAMSTAT and MODELSTAT statements contain similar program­
ming and modeling statements as used in SAS NLMIXED to fit theone­
class model, except now that we specify two different means beta01 and 
beta02, for xO corresponding to the two latent classes. The RANDOMSTAT 
statement is also similar to the RANDOM statement of SAS NLMIXED. Here 
we only have one random weight, theta (OpO) , which corresponds to the 
intercept. Note that in the code for the macro, the model has been para­
metrized in terms of the class-specific means beta01 and beta02 and not 
in terms of the class-specific deviations mu01 and mu02. 
8. The number of classes is specified in the G statement. 
9. The DECISION and STOPRULE statements allow one to change the con­
vergence criterion. The default (DECISION = 2) is that the algorithm will 
stop as so on as two successive loglikelihood evaluations are smaller than 
STOPRULE. One can change the stopping criterion to the maximum absolute 
difference between two successive parameter estimates (DECISION = 1) or 
to the derivative of the loglikelihood in Equation 11.3 (DECISION = 3). By 
default, STOPRULE = 1e-08. 
10. The multiplication factor C used in Equation 11.13 is specified in the 
Astatement. 
11. The posterior probabilities and empirical Bayes estimates are written 
to the SAS datasets poster and ebest. This is specified in the ENDPOST 
and EB statements. The EBmean statement is necessary to calculate the EB­
estimates. 
12. The value of xO is one for all observations and x01 and x02 are dummy 
variables indicating class membership. These variables are created by the 
SAS macro. The weights beta01 and beta02 are the class-specific means 
of the intercept. 
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13. Note that in the two-dass model A the variance of the random weight 
is assumed to be equal in both dasses. To fit a model with different vari­
ances, the RANDOMSTAT statement can be adapted as follows: theta rv 

normal(O, s21*x01 +s22*x02) with s21 and s22 referring to the variance 
in the first and second dass respectively. 

11.6 Exercises 

1. Do you think it is possible to combine the mixt ure models of Figure 
l1.2c and l1.3c, so that the two dasses differ as to their structure? Can 
you describe each dass? 

2. The symbol O:pr is used to indicate dass membership, but it functions 
also like a slope, since it is a multiplicative factor for ((}pr - ßir). Explain 
how the o:s can play these two roles and how they can be interpreted. 

3. Is the two-dass model C represented in one of the figures of the chapter? 

4. Estimate the two-dass model B with the SAS macro. 

5. Adapt the software code in Section 11.5, so that for the two-dass model A 
the difference between the two dass means is estimated and can be tested. 

11. 7 Appendix: Estimation of parameters, 
standard errors, and random effects 

11.7.1 Estimation of parameters 

Define the indicator variables O:pr,P = 1, ... , P; r = 1, ... , Ras follows: 

0: = {I if the pth person belongs to the rth dass, 
pr 0 otherwise. 

It follows from this definition that Pr( O:pr = 1) = 1f r' The joint loglikeli­
hood function for the observed measurements Y and for the vector a of all 
unobserved O:pr equals 

l(ely, a) = ~:=llp(eIYp, a p) 
(11.9) 

= ~:=l ~~=l O:pr(log(1fr ) + 10g(fpr(Ypl'IjJ)))· 

Maximization of l(eIY, a) thus not only depends on the observed data Y but 
also on the dass variables O:pr, which are unknown. Intuitively, a solution 
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is to replace the 'missing' O:pr by their expected value, following the EM 
algorithm. Therefore, the expected value of the log-likelihood l(ely, a), 
given the observed data y will be maximized. The maximization procedure 
keeps iterating between two steps, an Expectation step (E-step) and a 
Maximization step (M-step), until convergence is attained. 

In the first step, the E-step, the conditional expected value of the loglike­
lihood, referred to as the objective function Q, will be calculated. Suppose 
that e(t) is the current estimate of e. Then, 

where 

E(l(ely, a)ly, e(t)) 
~:=1 ~~=1 E(O:prlyp,e(t))(log(7fr ) 
+ log(fpr(Ypl'I/J))) , 

7fr pr yp'" = (c(t)) (t)!: ( Ic(t)) I 
R (t) ( ) - 7fpr ... . 

~r=l 7fr !pr(Ypl'I/J t ) e<t) 

(11.10) 

Here, 7fpr (e) is the posterior prob ability of the pth person belonging to the 
rth dass. It can be seen that the E-step actually reduces to calculating the 
posterior probabilities. Note that compared to Equation 11.9 the unknown 
variables O:pr are replaced in Equation 11.10 by their expected value. 

In the second step of the algorithm, the M-step, the objective function 
Q(ele(t)) has to be maximized with respect to e in order to get the updated 
parameter vector e(t). It can be seen from Equation 11.10 that the objective 
function can be written as a sum of two parts: 

(11.11) 

Maximizing the first part of Equation 11.11 results in updating the dass 
probabilities in the following way: 

p 

7f(t+1) = ~ '"' 7f (c(t)) r p~ pr .... 
p=l 

The updated estimate of the rth dass prob ability is the average of the 
posterior probabilities in this dass. 

The second part of Equation 11.11 is more difficult to maximize, since 
it requires numerical procedures such as Newton-Raphson. We will now 
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explain how standard software, such as the NLMIXED procedure of SAS, 
can be used to maximize this part of the objective function. We want to 
maximize 

P R 

L L 7l"pr(e(t)) log{jpr(Ypl"p)}, (11.12) 
p=lr=l 

with respect to "p. A first key idea is that if the posterior probabilities 
7l"pr(e(t)) were integers, this would be the loglikelihood for the homoge-

neous model based on observations from ~:=l ~~=l 7l"pr(e(t)) individuals. 
A second key idea is that maximization of an objective function is equiva­
lent to maximizing this objective function multiplied by a constant. Thus 
maximization of Equation 11.12 is equivalent to maximizing 

P R 

L L C.7l"pr(e(t)) log{jpr(Ypl"p)} 
p=lr=l 

P R 

L L cpr(e(t)) log{jpr(Ypl"p)}, 
p=lr=l 

(11.13) 

where C is an arbitrary constant and cpr(e(t)) = C.7l"pr(e(t)). By taking C 
sufficiently large, and by rounding off the numbers cpr to integers, Equa­
tion 11.13 can be maximized as if it were a loglikelihood coming from an 
homogeneous model with ~:=l ~~=l cpr persons. This will be an approx­
imation to maximizing the loglikelihood in Equation 11.12. The larger C, 
the better this approximation will be. However, in practice, we would have 
to multiply our dataset C times, which would increase the computation 
time substantially. Fortunately, the SAS procedure NLMIXED provides a 
REPLICATE statement which can be used when modeling data sets where 
different persons have identical data. The use of this REPLICATE statement 
allows us to increase C without affecting the computation time, such that 
the loglikelihood in Equation 11.12 can be approximated with an arbitrarily 
dose degree of accuracy. 

The algorithm will iterate between the E-step and M-step until the dif­
ference between two successive loglikelihood evaluations in Equation 11.3 
is smaller than some small value E, that is until 

Il(e(t)ly) -l(e(t+l)ly)1 < E. 

In practice one often uses E = 1e - 08 ~ stopping criterion. The maximum 
likelihood estimate of e is denoted bye· 

11. 7.2 Standard errors 

One of the drawbacks of the EM algorithm is that it does not provide 
standard errors automatically. For this, one would have to calculate the 
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observed information matrix: the inverse of the second derivative of the 
loglikelihood in Equation 11.3. One of the reasons for using the EM algo­
rithm was to avoid this calculation. 

Louis (1982) provides a procedure to approximate this observed informa­
tion matrix I((;" y). For finite mixt ure models, it can be shown (McLachlan 
& Krishnan, 1997) that I((;" y) can be approximated by the empirical ob­
served information matrix 

p 

I e = I: s(Yp, e)s' (yp' e), 
p=l 

where 

It can be seen that this approximation can be expressed in terms of the 
conditional expectat;!on of the gradient of the loglikelihood in Equation 
11.13, evaluated at (;,. The computation of the second order derivative of 
this loglikelihood is not needed. 

11.7.3 Empirical Bayes estimation 

The EB estimates in the SAS procedure NLMIXED are defined as the 
mode of !p(Op!yp,(;,) cx !p(Yp!Op, (;,)cp(Op) , the posterior distribution of the 
random effects, conditional on yp' However, because of the possible multi­
modality of the random-effects distribution under the heterogeneous model, 
this definition is no longer suitable. The posterior distribution of Op can 
also be written as 

R 

!p(Op!yp, (;,) = I: 7rpr ((;,)!pr(Op!yp,,,p), 
r=l 

where !pr(Op!yp,,,p) is the posterior density function of Op, conditional on 
the fact that Op was sampled from dass r in the mixture. 

Therefore, it is natural to calculate the EB estimates under the hetero­
geneous model as 

R 

Op I: 7rpr ((;,)Opr, 
r=l 

where Opr are the EB estimates of the random effects for the pth person in 
the rth dass. 
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12.1 Introduction 

The aim of this last chapter is threefold. First, we want to give the reader 
furt her insights into the estimation methods for the models presented in this 
volume. Second, we want to discuss the available software for the models 
presented in this volume. We will not sketch all possibilities of the software, 
but only those directly relevant to item response modeling as seen in this 
volume. Third, we want to illustrate the use of various programs for the 
estimation of a basic model, the Rasch model, for the verbal aggression 
data. 

12.2 General description of estimation algorithms 

In this section we give abrief overview of the most common estimation 
methods for the item response models discussed in this volume. It is not 
our purpose to explain these methods in great detail but rat her to layout 
the fundamental ideas and discuss some advantages and drawbacks. The 
content of this section is closely related to theoretical material presented 
in Chapter 4. 

12.2.1 Introduction 

The Rasch model will be the central example for which the various es­
timation methods will be explained. The generalization of the methods 
presented to more dimensions and other models is straight forward. Our 
discussion in this section is restricted to 2-level models (i.e., no level be-
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yond the persons, see Chapter 5), but most of the methods presented can 
be generalized to models with more than just two levels. 

The Rasch model has been introduced in Chapter 2: 

(12.1) 

where 'TJpi = logit(7rp i), and where p = 1, ... , P indexes persons and i = 
1, ... ,I indexes items. 

The model from Equation 12.1 contains two different kinds ofparameters: 
ßs, which are fixed-effects parameters representing the item difficulties, and 
es, which are person parameters. In Chapter 2 the person parameter was 
seen as a random effect, but there are in fact three possible ways to look at 
the person-specific parameters, each with consequences for the estimation 
methods and inferences one can make. 

Joint maximum likelihood estimation 

In a first approach, the person parameters can be viewed as fixed effects, 
having the same status as the item parameters ßi. To estimate the para­
meters of the model with fixed person and item parameters, one computes 
the following likelihood: 

P I 

L JML (ß, 9) = rr rr Pr(Ypi = Ypi), 
p=1 i=1 

which is then maximized jointly with respect to item and person parame­
ters (all item and person parameters are collected in the vectors ß and 
9, respectively). This method is called joint maximum likelihood (JML) 
estimation. 

A major disadvantage associated with JML is that the estimators of the 
item parameters are not consistent (Neyman & Scott, 1948). The reason 
is that the number of parameters increases at the same rate as the sam­
pIe size increases because each new person implies a new parameter. The 
inconsistency of item parameter estimators is a problem from both descrip­
tive and explanatory points of view. In a descriptive research context, one 
often wants to calibrate a measurement instrument and inconsistent esti­
mators may jeopardize a valid calibration. From an explanatory point of 
view, inconsistent estimators may pose a threat to valid inferences about 
what determines the item difficulties. 

Conditional maximum likelihood estimation 

In a conditional inference approach, the conditional probabilities of the 
response pattern are derived using the sufficient statistics. For the Rasch 
model, the sufficient statistic for a person-specific effect ep is the sum score, 

sp = ~{=1 Ypi (Andersen, 1980). From the definition of sufficient statistics 
it follows that, after conditioning, the probability of observing a response 
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pattern does not depend on the person-specific effect, but only on the 
sufficient statistic. Consequently, the person-specific effects disappear from 
the so-called conditionallikelihood: 

P 

LCML(ß) = rr Pr(Yp1 = Ypl,···, YpI = YpIlsp). 
p=l 

The conditionallikelihood is maximized with respect to ß. This method is 
known as the conditional maximum likelihood (CML) method. 

Unlike JML, CML estimators are consistent and asymptotically normally 
distributed (Andersen, 1970). However, there are also a few dis advantages 
to the conditional framework. First, from a measurement perspective it 
is an undesirable situation that no inferences are possible on the persons. 
A possible solution is to consider the item parameters after estimation as 
known quantities, and to plug them into the joint likelihood and optimize 
the latter with respect to the person parameters. However, this method 
does not recognize the uncertainty in the item estimates. Second, CML 
may not be the most efficient method, because the conditional likelihood 
is maximized rather than the full likelihood. If the distribution of the suf­
ficient statistics depends on the item parameters, then not all information 
regarding the latter is used, because this distribution is not part of the 
likelihood. However, asymptotically, the loss of information is negligible; 
see Molenaar (1995) for a discussion. Third, for models without sufficient 
statistics for the person parameters, the CML method cannot be applied. 
This is the case for models that are not GLMMs, such as the 2PL model, 
but an exception is the MIRID (Chapter 9). 

Marginal maximum likelihood estimation 

A third possibility is to consider the person-specific effects as indepen­
dent random draws from a density defined over the population of persons, 
denoted by g(Bpl"p), which is characterized by a vector of unknown popu­
lation parameters, "p, that have to be estimated together with fixed-effects 
parameters ßi' This has been the perspective taken in this volume. The 
marginal likelihood is formed by integrating with respect to the random 
effects: 

(12.2) 

and this likelihood is then maximized with respect to ß and "p. If the density 
9 is discrete, the integral must be replaced with a sumo In the psychometrie 
literat ure the method based on maximizing Equation 12.2 is known as 
the marginal maximum likelihood (MML) method. In the following, we 
will refer only to MML estimation, so we will drop the subscripts of the 
likelihood and use L(ß,,,p) to refer to the MML likelihood. 
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Three special cases of the MML approach can be distinguished: nonpara­
metric, semiparametric and parametric, depending on the assumptions one 
malms about the unobserved population density of the random effects. (1) 
Under the most general approach, the nonparametric maximum likelihood 
estimation or fully semi-parametric estimation method (Reinen, 1996), no 
assumptions are made ab out g(Opl1/J) - it is left completely unspecified. 
Laird (1978) has shown that in this case the estimate of the cumulative 
distribution function G(Opl1/J) is a step function with a finite number of 
steps. (2) In the semi-parametric estimation method (Reinen, 1996), the 
location of the steps are assumed to be known but the probability masses 
at these fixed nodes have to be estimated. (3) In the parametric estimation 
method, the population density g(Opl1/J) is taken to be a parametric density 
for which the parameters have to be estimated. For most models presented 
in this book, the population density g(Opl1/J) is assumed to be normal with 
zero mean and unknown variance. 

By assuming that the person-specific parameters are a random sample 
from a parametric population distribution, the original item response model 
(such as the one in Equation 12.1) is extended with an additional compo­
nent. If the model fails to fit the data, this misfit can be the result of 
the fact that the assumed population distribution does not adequately de­
scribe the true distribution of random effects. In Chapter 11 an approach 
is described with a mixt ure of normals as a population distribution for the 
random effects which allows for more flexibility in fitting the distribution. 

Note that for a model with crossed random effects (see Chapter 6), the 
dimension of integration is the sum of the number of persons and the num­
ber of items, whereas in Equation 12.2 the dimensionality is only one. As a 
consequence, some of the approximative methods discussed below (e.g., the 
Laplace approximation) may not be accurate (Shun & McCullagh, 1995), 
and (approximative) numerical integration may not be feasible. Bayesian 
methods may be used instead,as illustrated in Chapter 6. 

12.2.2 Optimizing the marginal likelihood with anormal 
mndom-effects distribution 

In this section we give an overview of the most common estimation meth­
ods that are used with anormal random-effects distribution. We start 
with some notation. The normal random-effects distribution is denoted 
by c/>(OplJ.to, a~), where J.to is the mean (by convention fixed to 0) and a~ 
is the unknown variance. The probability of the response pattern Yp as 
generated by person p on the set of I items and conditional on Op, is 
denoted by Pr(YpIß,Op), where ß is the vector of dimension I contain­
ing the fixed effects (one per item). For the Rasch model, Pr(YpIß,Op) = 
n;=l Pr(YpiIß, Op) (with Pr(Ypi I ß,Op) = 7rpi if Ypi = 1), but this is not 
the case if the conditional independence assumption does not hold (as for 
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some models described in Chapters 7 and 10). 
The marginallikelihood that has to be optimized can now be written as 

follows: 

p p 

L(ß, (l~) = rr Lp(ß, (l~) = rr J Pr(YpIß, Op)Iji(OpIO, (l~)dOp, 
p=l p=l 

(12.3) 

where Lp(ß, (l~) is the contribution of person p to the marginallikelihood. 
To facilitate the numerical maximization, it is common to take the loga­
rithm of the marginal likelihood. For the sake of clarity, we have dropped 
the limits of integration in Equation 12.3 and in the remainder of the sec­
tion. 

For all the item response models considered in this volume (with the ex­
ception of some models mentioned in Chapter 4), the integral appearing in 
the marginallikelihood is intractable which means that it has no analytical 
or closed-form solution. This is unlike the integral from the linear mixed 
model. 

There are two general types of solutions to the problem of the intractable 
integral. The first one is to approximate the integral with numerical inte­
gration techniques. The second solution is to approximate the integrand, 
so that the integral of the approximation does have a closed-form solution. 
Apart from the type of approximation, the problem is a standard opti­
mization problem for which many good introductory texts are available 
(Bunday, 1984; Everitt, 1987; Gill, Murray, & Wright, 1981; Lange, 1999). 

12.2.3 Approximation to the integral 

A major advantage of the methods that rely on the approximation to the 
integral is that they can be applied to all models from this volume, with 
the exception of the models from Chapter 6 for which a Bayesian analysis 
is definitely better suited. 

In this method, a numerical approximation to the likelihood in Equa­
tion 12.3 is maximized. Roughly speaking there are four different ways of 
approximating the integral, and they can be classified in a two-by-two table. 
The first dimension is direct versus indirect maximization. Indirect maxi­
mization means that the maximization problem is transferred to another 
function for which it can be shown that as a by-product of its maximiza­
tion the marginallikelihood is also maximized. A prominent example is the 
EM algorithm. The second dimension is the deterministic versus stochastic 
nature of the numerical approximation to the intractable integral. 

In what folIows, direct and indirect maximization will be discussed in 
two separate sections and the deterministic and stochastic variants will be 
considered within each section. 
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Direct maximization 

When applying direct maximization techniques, the intractable integral in 
Equation 12.3 is numerically approximated and then this numerical ap­
proximation is maximized. A first possibility is to approximate the integral 
by means of a numerical integration rule; this constitutes the deterministic 
approach. In the unidimensional case, the integral is then replaced by a 
single finite sum of rectangular areas that approximate the area under the 
integrand. Because the random effects are assumed to be normally distrib­
uted, the Gauss-Hermite (GH) quadrat ure (Abramowitz & Stegun, 1974) 
is most commonly chosen, called Gaussian quadrature in this volume. The 
Gaussian quadrature approximation is as follows (Naylor & Smith, 1982): 

Lp(ß, O"~) J Pr(YpIß, Bp)1>(BpIO, O"~)dBp (12.4) 

M 

;:::;; ~ Pr(YpIß, V2O"Oqm) ~, (12.5) 

where qm and W m are the mth quadrature node and weight, respectively. 
The nodes of a Gaussian quadrat ure are optimally spaced and weighted so 
that with M nodes the approximation is exact if the function Pr(YpIß, Bp ) 

is polynomial of degree 2M -1 or less. Nodes and weights can be found in 
Abramowitz and Stegun (1974). 

In a standard Gaussian quadrat ure approximation the no des are rescaled 
(and recentered, but the latter does not have an effect because of the zero 
population mean) such that they cover the range of the normal population 
distribution. However, this rescaling is identical for every person p, which 
is not always the most accurate thing to do. To see this, we go back to the 
form of the integrand, Pr(YpIß, Bp)1>(BpIO, O"~). The integrand is actually the 
(unnormalized) posterior distribution of Bp given the data and fixed-effects 
parameters. If the data for person p are extreme (e.g., almost all ones or 
zeros), then the posterior distribution of Bp will also be extreme and may 
deviate strongly from the population distribution, which puts more mass 
in the region where the moderate Bp values are located. 

Consequently, it might be more appropriate to apply an individual rescal­
ing and recentering. That is the basic idea behind adaptive Gaussian quadra­
ture (Pinheiro & Bates, 1995). For each person, the empirical Bayes esti­
mate of Bp (i.e., ep ) is computed together with the asymptotic variance of 
this estimate. Both quantities are computed given the current estimates of 
the fixed effects and given the data. Then the contribution of person p to 
the marginal likelihood is rewritten in the following form: 
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where f; is the asymptotic variance of the empirical Bayes estimate. In this 

case, <jJ(BpIBp, f;) is the distribution that determines the position and the 
weights of the quadrat ure points instead of <jJ(BpIO, O'~). This means that 
the empirical Bayes estimate Bp needs to be added to the node qm, and the 
node must be multiplied by V2fp . 

Adaptive Gaussian quadrature needs fewer quadrature nodes, because, as 
explained in Chapter 4, it is better concentrated in the informative region 
of the continuum. The price to pay is that empirical Bayes estimates have 
to be computed at each step of the optimization algorithm, which may be 
very time-consuming. That is the main reason why in many chapters the 
nonadaptive or regular Gaussian quadrature rule was used. In defense of 
this, recall that, for the basic models in Chapter 2, and for several other 
models in the subsequent chapters, adaptive Gaussian quadrat ure was used, 
and gave similar results, with differences not larger than reported in Section 
12.4.2. However, this may not be true in general. For an interesting study 
investigating the number of quadrature nodes for logistic random-effects 
models, see Lesaffre and Spiessens (2001). 

Several algorithms are available for maximization of the approximated 
likelihood function obtained from adaptive or nonadaptive Gaussian quadra­
ture. Some weIl-known methods to accomplish this are the Newton-Raphson 
technique and Fisher scoring. 

The previous two methods made use of a fixed or deterministic set of 
nodes and weights. An alternative is to use Monte Carlo integration. The 
integral over the random-effects distribution can be viewed as an expec­
tation of the function Pr(YpIß, Bp) over the normally distributed random 
variable Bp : 

An expectation can be estimated by drawing a random sam pIe and com­
puting the sam pIe average. This means that M values of Bp are drawn from 
the population distribution and then the following quantity is calculated: 

M 

Lp(ß, O'~) ~ ~ L Pr(YpIß, B~m)). 
m=l 

(12.6) 

with B~m) as the value of Bp at node m. This simple Monte Carlo procedure 
is the stochastic equivalent of the Gaussian quadrature with common re­
centering and rescaling (i.e., nonadaptive). Adaptive Gaussian quadrat ure 
has a stochastic counterpart as weIl (Pinheiro & Bates, 1995), but now the 
draws of Bp come from the distribution <jJ(BpIBp,f;). 

Indirect maximization 

In an indirect maximization method the optimization of the (log)likelihood 
is transferred to another function for which it can be shown that a maxi-
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mization results in an increase in the original marginallikelihood. The most 
common indirect maximization algorithm that is applied in the context 
of random-effects models is the Expectation-Maximization (EM) algorithm 
(Dempster, Laird, & Rubin, 1977). 

In the EM algorithm, the collection of random effects from all persons 
() = (fh, ... , () p) are considered as missing data and, together with the 
observed data y = (y~, ... , y'p)" they form the complete data. The random 
effects are missing and thus not observed, so that in each cycle of the 
algorithm, one starts with computing the expected value of the complete 
data loglikelihood, given the observed data and given the estimates of the 
fixed effects ßOld and a3 old from the previous cycle, and the observed data. 
This is called the E-step. Then the expected loglikelihood is maximized, 
which is called the M-step. Each iteration of the EM algorithm consists of 
an E-step followed by an M-step, and that is continued until convergence. 

The expectation of the complete data loglikelihood, fc(ß, (3), is defined 
as follows: 

E (fdß, (3)ly, a3 old,ß Old) 

~ E (lOg il (h(y, Iß, 9, )~( 0,10, ,r,)) Iy, a: old, ß old ) 

P 

= LE (log (Pr(YpIß, ()p)c/>(()pI0,a3)) ly,a3 old,ß Old) (12.7) 
p=l 

p 

= L J (log (Pr(YpIß, ()p)) + log (C/>(()pI0,a3)) h(()ply,a3 old,ß Old)) d()p, 
p=l 

where h(()ply, a3 old, ß old) is the conditional density of the random effects 
given the observed data, the current estimates of the fixed parameters, 
and the variance of the random-effects distribution. After computing the 
expected complete data loglikelihood (the E-step), it is maximized with 
respect to ß and a3 (the M-step). 

It can be seen from Equation 12.7 that the intractable integral has not 
disappeared from the expected complete data loglikelihood. Thus, the inte­
gral still has to be approximated with a Gaussian quadrature or with Monte 
Carlo integration (the latter leading to a Monte Carlo EM algorithm; see 
Tanner, 1996, and McCulloch & Searle, 2001). 

If we are left with the same problem that we have tried to avoid, why use 
the EM algorithm? The EM algorithm offers three advantages. First, the 
algorithm guarantees that in every iteration the marginalloglikelihood (the 
log of Equation 12.3) increases, although the algorithm does not directly 
maximize it (Lange, 1999; McLachlan & Krishnan, 1997). This makes the 
algorithm numerically very stable. This is not guaranteed, however, when 
the integral is only an approximation. Second, the expected complete data 
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loglikelihood from Equation 12.7 is written as the sum of apart pertaining 
to the fixed-effect parameters and apart pertaining to the variance para­
meter. This means that the estimation of both sets of parameters can be 
done separately in the M-step which reduces the dimensionality of the opti­
mization problem. Third, the M-step in the EM algorithm has closed-form 
solutions for some parameters. For the variance components under a nor­
mal distribution, such a closed-form solution is available. For parameters 
that do not have a closed-form solution, one has to rely in the M-step on 
an iterative optimization method, using for example the Newton-Raphson 
method. 

A disadvantage of the EM algorithm is that the convergence to the max­
imum is usually not very fast, especially in the neighborhood of the maxi­
mum of the marginallikelihood. Modifications of the original EM algorithm 
have been presented to accelerate convergence or to facilitate the compu­
tation of the maximization step; see McLachlan and Krishnan (1997) and 
Tanner (1996) for an overview. 

In the context of traditional item response modeling with only the item 
indicators as item predictors, the application of the EM algorithm has an­
other major advantage as has been shown by Bock and Aitkin (1981). To 
illustrate this point, we consider the Rasch model; but the same is true 
for the 2PL model. The vector with item parameters ß can be subdivided 
into I disjoint subsets of parameters (in this case individual parameters), 
ßl, ... ,ßI, each pertaining to a single item. Given the random effect ()p, 

there is conditional independence, and consequently, the expected loglike­
lihood can be written as a sum of independent terms, one for each item, 
and each can be maximized separately. This property allows one to ana­
lyze data sets with a large number of items (e.g., 50 or more) which would 
be otherwise impossible. The same property still holds with person pre­
dictors in the model. The person part of the regression model can be seen 
as the non-zero mean of the normal distribution and therefore the regres­
sion coefficients can be estimated again separately from the item difficulties 
(Adams, Wilson, & Wang, 1997; Wu, Adams, & Wilson, 1998). This ad­
vantage explains the popularity of MML estimation with EM in the field 
of psychometrics. 

12.2.4 Approximation to the integrand 

The goal of approximating the integrand is to obtain an expression so that 
the integral of the approximation has a closed-form solution. Two types 
of techniques will be discussed: Laplace's method and a class of methods 
called the quasi-likelihood methods. 

Laplace '8 method 

In Laplace's method (Tierny & Kadane, 1986), we take the integrand ofthe 
contribution of person p to the marginallikelihood, Pr(YpIß, ()p)(,IJ(()pIO, (J~), 
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and write it as exp(log (Pr(YpIß, Bp)4>(BpIO, O"~)). Next, we approximate the 

exponent by a quadratic Taylor series expansion ab out its maximum i}p 
(which is again the empirical Bayes estimate for Bp ). Because the approxi­
mation to the exponent is quadratic in Bp , the approximation to the inte­
grand will be proportional to a normal distribution and the integral can be 
solved explicitly. The result is then: 

where f p is the square root of the asymptotic variance of the empirical 
Bayes estimate. 

The empirical Bayes estimate i}p as weIl its variance f; depend On the 

unknown parameters ß and O"~, so that in order to obtain i}p and f; One 
needs to know the value of ß and O"~. There are two options to solve this 
problem. First, One can use the estimates for ß and O"~ obtained from the 
previous iteration of the algorithm in order to obtain empirical Bayes esti­
mates, as in adaptive Gaussian quadrature. Adaptive Gaussian quadrature 
with a single node is equivalent to this version of Laplace's method. Once 
the empirical Bayes estimates are available, the Laplace approximation can 
be maximized with respect to ß and O"~. This method is not used except 
when One wants to apply Laplace's method through adaptive quadrature 
with One node, as mentioned in the SAS manual (SAS Institute, 1999). 
The second option is to acknowledge explicitly the dependency of i}p and 
f; On the unknown parameters ß and O"~ and to find the empirical Bayes 
estimates and fixed-effects estimates jointly. This is the option that is com­
monly implemented. 

Raudenbush, Yang, and Yosef (2000) proposed an extension of Laplace's 
method by including also higher order terms in the Taylor approximation 
to 10g(Pr(YpIß,Bp)4>(BpIO,0"~)). Raudenbush et al. (2000) argue that six 
terms are sufficient for an accurate approximation. They call their method 
Laplace6. 

Quasi-likelihood approaches 

Because estimation methods for linear mixed models are well-established, 
several researchers have tried to approximate the models for categorical 
data by a linear mixed model so that the estimation methods for the latter 
class of models can be applied. The two most popular approaches here are 
the penalized quasi-likelihood (PQL; Breslow & Clayton, 1993; Schall, 1991; 
Stiratelli, Laird, & Ware, 1984) and marginal quasi-likelihood (MQL; Gold­
stein, 1991). There are also several extensions proposed of both methods 
(MQL2, PQL2, and corrected PQL). 

Breslow and Clayton (1993) introduced the names PQL and MQL. The 
term quasi-likelihood methods is used because the methods require only the 
specification of a mean and variance for the observations and there is nO 
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need to speIl out explicitly the distribution of the data. In a GLM frame­
work, the same terminology is used for the estimation of models where 
only means and variances are specified. Although PQL and MQL are das­
sified here as methods that approximate the integrand, they can also be 
explained as approximations to the data. That is also the perspective we 
take for didactical reasons. 

In both PQL and MQL, the response function (i.e., the inverse link func­
tion) is approximated by a linear Taylor series expansion. For PQL, the 
expansion is about the current estimates of the fixed-efIect regression coef­
ficients and about the empirical Bayes estimates for the random efIects. For 
MQL, the expansion is also about the current estimates of the fixed-efIect 
regression coefficients, but about 0 for the random efIects. It can be shown 
that applying this linear approximation of the response function leads to a 
linear mixed model for a linear transformation of the original data y. The 
parameters of this model can be estimated and the estimates can in turn 
be used to update the linear approximation. The algorithm cydes between 
these two steps until convergence. 

Because the PQL and MQL methods rely on a number of approxima­
tions, for which it is hard to assess the accuracy, one should not be surprised 
to learn that the methods often do not work very weIl. The original data 
are transformed in PQL and MQL, and then they are considered as nor­
mally distributed such that a linear mixed model estimation routine can 
be applied. Consequently, the methods will perform poorly when the orig­
inal data are far from normal, which is the case for binary data. This was 
confirmed by Breslow and Clayton (1993) in a simulation study for PQL 
and MQL. Rodrfguez and Goldman (1995) came to the same condusion for 
MQL. A bias towards zero was found for the fixed efIects and/or variance 
component estimates. Similar results are reported in Section 12.4. Breslow 
and Lin (1995) demonstrated that there is also an asymptotic downward 
bias for the regression coefficients estimated with PQL. 

Another factor afIecting the quality ofthe quasi-likelihood methods is the 
number of items given to the persons. The reason is that in a linear mixed 
model, the estimates of the fixed-efIects parameters are only afIected by the 
observations through the sufficient statistics of the fixed-efIect parameters, 
which are linear combinations of the data. Hence, it is the distribution of 
the sufficient statistics of the fixed efIects that should be dose to normal. 
For a large number of items or sufficiently continuous data, this is not 
problematic but for fewer items or with less sufficiently continuous data, 
the normality approximation can be poor. Thus, it is expected that PQL 
and MQL perform less weIl if the number of items is smalI, or if the data 
are binary, or both. 

Moreover, MQL uses a linear Taylor approximation around the current 
fixed efIects and zeros for the random efIects. As a consequence, if the 
random-efIect variances are large, this method will lead to less accurate 
results. Rodriguez and Goldman (1995) have confirmed this hypothesis in 
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a simulation study. 
To overcome some of the problems of PQL and MQL, there have been 

attempts to improve both methods. PQL2 and MQL2 make use of second­
order (as opposed to first-order) Taylor expansions of the response func­
tion. Breslow and Lin (1995), and Lin and Breslow (1996) present a bias­
corrected version of PQL. Comparing the different quasi-likelihood meth­
ods, Rodriguez and Goldman (1995) show that MQL2 performs only slightly 
better than MQL in terms ofbias but Goldstein and Rasbash (1996) demon­
strate that PQL2 leads to a substantial improvement over PQL. In arecent 
simulation study by Browne and Draper (2003), it appears that PQL2leads 
to much better results than MQL (the authors did not use PQL). 

Unfortunately, the quasi-likelihood methods have been investigated only 
for GLMMs, and for NLMMs with normally distributed error (Wolfinger & 
Lin, 1997) (and thus continuous variables). It is unclear how they perform 
for other nonlinear mixed models such as the 2PL model. 

As a final disadvantage to the quasi-likelihood methods, note that the 
deviance measure produced by using PQL or MQL methods cannot be used 
for model testing. These methods are based only on assumptions about 
the first and second moments of the data (mean and variance), which is 
acceptable when estimating the parameters but not for testing. Testing the 
model requires reference distributions for the test statistics and for this 
purpose one must specify the full distribution of the data, not only their 
first and second moments. 

Of the methods we discussed for an approximation of the integrand, only 
PQL and PQL2 are used in this volume, more in particular in Chapter 5 
and in Section 12.4. 

12.2.5 Bayesian estimation 

An important feature of the previously discussed estimation methods is 
that they are developed within a frequentist framework of statistical infer­
ence. An alternative is to consider Bayesian estimation methods. The major 
advantage of the Bayesian framework is that modern computer-intensive 
techniques, known as Markov chain Monte Carlo (MCMC) methods (Gel­
man, Carlin, Stern, & Rubin, 2004; Tanner, 1996; Zeger & Karim, 1991), 
can often make the parameter estimation problem less complex. For models 
with more than two levels of random effects or models with crossed random 
effects, Bayesian estimation methods can be very practical. A Bayesian es­
timation method is used in Chapter 6, for models with crossed effects. 

Classical (maximum likelihood) and Bayesian approaches differ in several 
respects: 

First, classical approaches clearly distinguish between fixed and random 
effects (parameters of interest and nuisance variables) whereas Bayesian ap­
proaches consider all effects to be essentially random. As discussed before, 
classical approaches involve a two-stage approach for parameter estimation. 
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In a first stage, fixed effects are obtained by maximizing the integrated 
likelihood (MML) or the conditional likelihood (CML) of fixed-effect para­
meters. In a second stage, person parameters are estimated by maximizing 
their posterior distribution assuming (first-stage) estimates of fixed effects 
are true. In contrast, Bayesian approaches use sampling-based MCMC al­
gorithms such as the Gibbs sampIer (Geman & Geman, 1984; Gelfand & 
Smith, 1990) and the Metropolis algorithm (Metropolis & Ulam, 1949; 
Metropolis et al. , 1953) to obtain a sampIe of the entire posterior distri­
bution of all model parameters in one stage. To guarantee the propriety 
of the posterior distribution it is necessary to specify a prior distribution 
for all model parameters. For person parameters and location parameters 
a normal distribution can be used whereas for discrimination parameters a 
lognormal distribution (allowing for only positive values) is often specified. 

Second, classical approaches yield standard errors of parameters that are 
based on an asymptotic normal approximation to the likelihood (or poste­
rior) whereas Bayesian approaches yield posterior intervals of parameters 
that are also valid in small sampIes. 

Third, monitoring convergence is more straightforward when using a clas­
sical approach than when using a Bayesian approach to approximate the 
entire posterior. A popular maximization algorithm such as the EM algo­
rithm has the strong property of increasing the likelihood at each iteration 
and converging to a stationary point of the parameter space. For popular 
MCMC algorithms such as the Gibbs sampIer it is known that, under mild 
regularity conditions, the simulated sequences converge to the true poste­
rior distribution, but assessing whether convergence has been attained is a 
difficult problem (for an overview, see Cowles & Carlin, 1996). 

Fourth, when using a classical approach for estimation, it is straightfor­
ward to check whether a necessary condition for (local) identifiability of 
the model is satisfied (Le., evaluate whether the Hessian in the estimated 
point is negative definite). In contrast, such acheck is not available when 
using a Bayesian approach for parameter estimation. 

12.3 Software 

12.3.1 Compamtive description of the progmms 

Several programs are available to estimate the models that are presented in 
this volume. On the one hand there is software available with the specific 
purpose to estimate item response models. Among these programs, most 
can estimate models with the propensity as a random variable (based on the 
MML formulation of the models). Most of the specific-purpose programs 
use indirect maximization (with EM). Examples are BILOG (Zimowski, 
Muraki, Mislevy & Bock, 1995), ConQuest (Wu, Adams & Wilson, 1998), 
MULTILOG (Thissen, Chen & Bock, 2002), OPLM (Verhelst, Glas & Ver-
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stralen, 1994). We will not furt her discuss these item response modeling 
programs, because, in line with the framework in this volume, we want 
to stress item response models as instantiations of broader categories of 
models. 

On the other hand, there is a more general kind of software with an 
initially different or broader kind of purpose: for multilevel models, gener­
alized linear and nonlinear mixed models and structural equation models. 
We will restrict the discussion to the pro grams of the multilevel type and 
the mixed models type. Note that the S-PLUS module nlme (Pinhero & 
Bates, 2000) can be used for nonlinear mixed models with Gaussian out­
comes (continuous variables) but not for categorical data. However, also 
most structural equation software can handle ordered-category (including 
binary) data, for example LISREL (Jöreskog & Sörbom, 2003), and Mplus 
(MutMn & MutMn, 2003). 

As far as the software from the multilevel tradition is concerned, there are 
two major programs: MLwiN, and HLM, and they will both be discussed in 
the following. As far as the generalized linear and nonlinear mixed models 
tradition is concerned, SAS has a macro, called GLIMMIX which uses the 
procedure MIXED for linear mixed models to estimate generalized linear 
mixed models, and it has also aseparate procedure, called NLMIXED, for 
the estimation of generalized linear and nonlinear mixed models. Based on 
STATA, a program called GLLAMM is also available for similar purposes. 
Some stand-alone programs are available: VARCL from the multilevel tradi­
tion, and MIXOR/MIXNO from the biostatistical mixed models tradition. 
EGRET (Cytel Software Corporation, 2000) sterns also from the latter tra­
dition and can handle also quite different models, such as survival models. 
VARCL (Longford, 1993) and EGRET (Cytel Software Corporation, 2000) 
will not be discussed furt her here, as they are restricted to binary data for 
item reponse models. 

The two traditions, the multilevel tradition and the mixed models tradi­
tion, differ as to their specialization (nested designs and linear models for 
the former, and nonlinear link functions for the latter), which explains why 
the multilevel programs often use linearization techniques to approximate 
the integrand, while the programs from the mixed models tradition use 
(approximative) numerical integration. 

The following programs: MLwiN, HLM, GLIMMIX, NLMIXED, GL­
LAMM, and MIXOR/MIXNO, will be first compared in general terms 
concerning the item response models that they can estimate and the es­
timation methods they use, and then more specific characteristics of each 
will be described. 

Programs and models 

The general features concerning the models that can be estimated are the 
following. Table 12.1 records the features of each of the programs listed 
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above (the keywords within parentheses are used in Table 12.1). 

TABLE 12.1. Kind of models that can be estimated by six programs. 

Program level crossed dist linear reg link poly 

MLwiN more cross normal linear man both poly 
HLM more cross normal linear man logit poly 
GLIMMIX more cross normal nonlin man both bin 
NLMIXED two no normal nonlin man both poly 
GLLAMM more no normal nonlin lat both poly 

discrete 
MIXOR/ two no normal nonlin man both poly 
MIXNO uniform 

• Levels of random effects (level) 
The item response models we have discussed always have at minimum two 
levels: (1) observations within persons, and (2) persons. The random ele­
ment of the first level is covered by the random component of the model 
(e.g., the Bernoulli distribution). The persons constitute the second level, 
which is commonly treated as a level with random effects. Most item re­
sponse models that are discussed in this volume are 2-level models. But a 
higher number 01 levels is possible. As shown in Chapter 5, one can easily 
add levels, (3) for groups of persons, and for (4) sets of groups, etc. 

• Crossed random effects (crossed) 
When random effects are introduced on both sides, for persons and for 

items, a model with crossed random effects is obtained. Crossed random 
effects occur whenever factors that are crossed in a design have effects that 
are random over the levels they have in the design. For example, the factors 
Person and Item are commonly crossed in item response data, and they may 
have effects that are random over their levels (Le., individual persons and 
items, respectively). It is also possible that two types of person groups are 
crossed, for example schools and the neighborhoods where the students live . 

• Distribution of random effects (dist) 
For the distribution of random effects, four possibilities can be distin­
guished: a standard distribution, an unspecified distribution, a mixt ure 
distribution, and conditioning out the distribution. The most common 
standard distribution is the normal distribution. No other standard dis­
tributions for item response models are used in this volume. For standard 
distributions, a parametric estimation method is used (see Section 12.2.1). 
An unspecified distribution implies that the distribution needs to be ap-
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proached through the estimation of probabilities of a set of nodes on a 
line (one-dimensional) or a grid (multidimensional ) without prespecified 
weights for the nodes. This is in fact a mixture of peak distributions. These 
are non-parametric or semi-parametric estimation methods, as mentioned 
in Section 12.2.1, and called here 'discrete distributions.' A mixture distrib­
ution is a mixture of standard distributions. Two cases are described in this 
volume: peak distributions (with zero variance) and normal distributions 
(see Chapter 11) . If a sufficiently large number of normal distributions is 
used, any shape of distribution can be approached reasonably well. Finally, 
when the conditional maximum likelihood method is used for estimation, as 
explained in Section 12.2.2, then the distribution is conditioned out. The 
distribution does not matter, since one conditions on the sufficient statis­
tics. This is equivalent to a saturated model for the distribution. 

• Linearity of the systematic component (linear) 
The systematic component (structural part) of a model is a function of pre­
dictors with 'TIpi as the function value. The function is linear in all GLMMs 
(e.g., the LLTM). The most common case of nonlinearity in this volume is 
that the model includes a product of two parameters, also called abilinear 
term, such as (XiBp in the 2PL model. The product can also be one of an 
item weight and a person parameter, as in the 2PL model, or of two item 
parameters, as in the MIRlD. A more complicated form of nonlinearity 
occurs in the 3PL model. It depends on the program which kind of nonlin­
earity can be handled (see Section 12.3.2). 

• Type of latent regression (reg) 
Two types latent regression may be distinguished. In a first case one or 

more manifest person variables are regressed on 'TIpi, or one could say on 
Bp • Such variables are actually treated as a set of constant values, and are 
assumed to be error-free. In fact, this type of regression is nothing more 
than using person predictors, but we have used the term 'latent regression' 
in Chapter 2 for the case person properties are used as predictors. The 
second kind of latent regression is one where one or more latent person 
variables (random effects) are regressed on one or more other latent vari­
ables (random variables), as when Bpkl is regressed on Bpk • Such models 
imply restrictions on the covariance structure of the random effects. They 
are also a way to deal with predictors with error. 

• Link function (link) 
The two link functions we have discussed in this volume are the logit 

link and the pro bit link. For multicategorical data, adaptations of these are 
needed. 

• Polytomous items (poly) 
The number of values Y pi can have determines whether the items are di-
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chotomous (binary data) or polytomous (multicategorical). When the data 
are polytomous, the categories can be ordered or not. As explained in Chap­
ter 3, various options are available, based on adjacent odds (PCMs), cu­
mulative odds (GRMs), etc. 

It can be seen from Table 12.1 that the software for multilevel models can 
handle more than two levels ('more' in Table 12.1, 5 by default for MLwiN 
but more if wanted, 3 for HLM) and also crossed random effects ('cross' in 
Table 12.1), while the typical software that was written for GLMMs and 
NLMMs, such as NLMIXED and MIXOR/MIXNO cannot ('two' in Table 
12.1). On the other hand, the latter can handle both nonlinear and linear 
systematic components ('nonlin' in Table 12.1), while the former cannot 
('linear' in Table 12.1). Of the other two programs, GLIMMIX resembles 
the multilevel programs, and GLLAMM combines most good features of 
both. All programs use the normal distribution for random effects ('nor­
mal' in Table 12.1), but GLLAMM also allows for a discrete distribution 
('discrete' in Table 12.1). Except for HLM, all programs can handle both 
the logit and probit link functions ('both' in Table 12.1, 'logit' if only logit 
link). All can handle binary as well as multicategorical data ('poly' in Ta­
ble 12.1), except for GLIMMIX (bin' in Table 12.1). For latent regression, 
only GLLAMM is really suited for latent variable regression ('Iat' in Table 
12.1), while all other programs concentrate on external manifest variables 
as predictors ('man' in Table 12.1). However, any program that can es­
timate multi dimensional models, and allows one to express one random 
effect as a function of another, can also be used for the purpose of latent 
regression with latent variables. When one can express covariance parame­
ters of the random effects as a function of other such parameters, then a 
confirmatory analysis is also possible. We have tried this with success in a 
small simulation study with the NLMIXED procedure from SAS, for the 
case where two random effects are partly determined by a common third 
random effect and the correlation between the first two stems only from 
the shared influence from the third. 

Estimation 

Next, the programs are compared in terms of the estimation methods they 
use. The features we will consider are the following: 

• Approximation of the integral 
The direct maximization is performed using Gaussian quadrature, adaptive 
or nonadaptive, as explained in Section 12.2.3. The adaptive method is su­
perior as shown in Chapter 4 of this volume, but for our application, the 
difference is minimal. One reason for the small difference is that a relatively 
large number of observations is made for each person (24 item responses 
compared with only 7 observations in the onychomycosis data that are an-
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alyzed in Chapter 4). The alternative is an indirect method, using the EM 
algorithm as in most programs that are specifically written for the estima­
tion of item response models. 

• Approximation of the integrand 
Here we distinguish between the Laplace6 method and quasi-likelihood 

approaches, such as MQL and PQL (see Section 12.2.4), further extended 
into MQL2 and PQL2. The PQL method outperforms the MQL method, 
and MQL2 and PQL2 are improvements on MQL and PQL, respectively, 
for reasons explained in Section 12.2.4. 

• Note on QL methods 
The QL methods are based on a linear approximation as explained in Sec­
tion 12.2.4. This makes these methods more similar to those used for linear 
mixed models. An important distinction in the estimation of the latter is 
made between restricted maximum likelihood (REML) and full maximum 
likelihood (ML). With ML, the fixed effects and the variance components 
(covariance structure) are estimated simultaneously (with all degrees of 
freedom), but with REML the loss of degrees of freedom involved in es­
timating the fixed effects is taken into account. A simple example is the 
estimation of the variance in a normal population. Either the number of 
persons in the sample is used in the numerator (ML method) or the same 
number minus one (REML). One degree of freedom is lost, because the 
mean, a fixed effect, takes one degree of freedom. The ML estimators are 
biased, while the REML estimators are not. The difference is especially 
important when the number of fixed effects is large. For example, in the 
Rasch model where each item has its own fixed effect. 

When the restricted approach used in the context of a linear approxima­
tion of a GLMM, two remarks are of importance. First, although the merits 
of ML and REML are documented for LMMs, they are much less clear for 
the linear approximations in the estimation of models with a nonlinear 
link function. Second, although the term 'maximum likelihood' is still used 
(ML, REML), one should not forget that QL methods do not maximize the 
likelihood of the data, but of a linear approximation instead. 

• Bayesian estimation methods 
Only one of the pro grams we discuss offers the possibility of a Bayesian 

estimation. Many of the models presented in this volume can be estimated 
using standard software for MCMC simulation such as BUGS (Spiegelhal­
ter, Thomas, Best & Lunn, 2003). 

It can be seen from Table 12.2, that the multilevel programs use meth­
ods to approximate the integrand (Laplace6 and QL methods) while the 
programs for mixed models use approximations of the integral (adaptive 
or nonadaptive). In only one program (MLwiN), is a Bayesian estimation 
method available (Metropolis Hastings within Gibbs). 
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TABLE 12.2. Estimation methods that are available in six programs. 

Program 

MLwiN 

HLM 
GLIMMIX 
NLMIXED 

GLLAMM 

MIXORjMIXNO 

Approximation 
integral 

no 

no 
no 
adaptivej 
nonadaptive 
adaptive 
nonadaptive 
nonadaptive 

12.3.2 Specijics of the programs 

Approximation 
integrand 

PQL, PQL2, 
MQL, MQL2 
Laplace6, PQL 
PQL and MQL 
no 

no 

no 

Bayesian 

yes 

no 
no 
no 

no 

no 

For each program we will first describe some specific features that have not 
yet been discussed in the comparative description of the programs. They 
concern data and models, and estimation. Second, we describe data format 
and commands. A typical data format is what we will call the vertical string 
format. This means that the item responses (the observations) are organized 
in one long string, with aseparate row per response of a person on an item, 
so that the length of the string is the number of persons multiplied by the 
number of items. Missing data make the string shorter, with a different 
number of observations per person. For a discussion of the implications, see 
Section 4.8. The values of the predictors for each individual response are 
then specified on the same row. Information for how to set up the different 
programs to estimate the Rasch model as in Section 12.4 is given on the 
website specified in the Preface. Third, we will also inform the reader on 
the availability of the programs and where one can find more information. 
Our discussion of the software is restricted to its use for item response 
modeling: to categorical data and models with a logit or probit link. 

MLwiN 

MLwiN (Goldstein et al., 1998) is the successor of an earlier program MLn. 
It is designed for multilevel modeling, but it can also be used for item re­
sponse modeling . 

• Models and estimation 
Although MLwiN cannot estimate NLMMs, it is possible to work with 
a discrimation parameter following an estimation procedure based on al­
ternating the estimation of the propensities and the item discrimination 
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parameters described by Woodhouse (1991). 
Goldstein and Rasbash (1996) show that the inclusion of a second-order 

term in the approximate procedures (MQL and PQL) proposed by Bres­
low and Clayton (1993) seriously reduces the bias inherent to these pro­
cedures. The adapted procedures are called MQL2 and PQL2. Both the 
original procedures (MQL and PQL) and the adapted ones (MQL2 and 
PQL2) are available in MLwiN. For accuracy of estimation, PQL2 is the 
best of these procedures, but for complex models PQL2 sometimes fails to 
converge, unless one starts from good initial values. Therefore it is recom­
mended to use MQL first (without extra-binomial variance) and to use the 
MQL estimates as initial values for PQL2. Because the approximation of 
the integrand is based on a linearization of the dependent variable, itera­
tive generalized least squares (IGLS) and its REML version (RIGLS) can 
be used, as proposed by Goldstein (1989) . 

• Data format and commands 
MLwiN makes use of worksheets. These worksheets contain the data. After 
a run of the program, the worksheets also contain the selected options and 
model specifications, and the results. If one does not want a worksheet to 
be overwritten in the next run, one should save it under a different name, to 
be inspected later, or to start from in later sessions. A MLwiN session starts 
with retrieving an existing worksheet or with creating a new worksheet by 
entering data or by importing data from an ASCII-file. The program makes 
use of a statistical environment that is useful to prepare the data (e.g., by 
sorting) and for other purposes. 

MLwiN can be used in three modes. The first is based on a graphical 
interface of windows. The commands that are needed can be chosen by 
pointing to and clicking on the commands that are displayed on the screen. 
The second mode is the command mode, typing in the commands one 
needs. This has to be repeated for each new run. The third mode consists 
of using a batch file containing the commands, so that one can reuse (parts 
of) the command set . 

• Availability and information 
MLwiN can be ordered from the website of the Centre for Multilevel Mod­
eling at the Institute of Education in London: http://mul tilevel. ioe. 
ac . uk. The models and estimation methods are described in Goldstein 
(2003) and Goldstein et al. (1998). 

HLM 

HLM is a program for multilevel modeling that can also be used for the es­
timation of item response models. Arecent update is HLM5 (Raudenbush, 
Bryk, Cheong & Congdon, 2000). 
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• Models and estimation 
The specification of the model is nicely parallel to the formulation of a 
GLMM: (1) the sampling model, (2) the link function, and (3) the struc­
tural model. When the link function is nonlinear, Raudenbush et al. (2000) 
use the term hiemrchical genemlized linear model (HGLM). The models 
that can be estimated are restricted to GLMMs. For example, the 2PL 
cannot be estimated. 

HLM provides MQL and PQL. Because HLM also makes use of a linear 
approximation, two variants are available for estimation: the ML variant 
and the REML variant. In addition to MQL and PQL a sixth-order ap­
proximation to the likelihood based on a Laplace transform is also available 
(Laplace6) (for binary data and 2-level models). Raudenbush et al. (2000) 
investigated the qualities of this estimation method and found that it is 
quite accurate. 

• Data format and commands 
Two separate input files are required: one for the items and one for the 
persons. The item file has a vertical string format, and contains one row 
per pair of a person and an item: with the observations and with the item 
predictors, and if there are such predictors, the person-by-item predictors 
as weIl. The person file has as many rows as there are persons and is used 
for the person predictors. The two files are linked through an ID for each 
person in both files. These files may be prepared in one of the common 
software packages. They are transformed by the program into a 'sufficient 
statistics matrix' (SSM) file. HLM can also be used in three modes: with a 
Windows interface, a command mode (answering quest ions on a prompt), 
and a batch mode. 

• A vailability and information 
Full versions of HLM are available for purchase from http://www . ssicen 
tral. corn or http://www . assess . corn with restricted versions available for 
students for free. The HLM software supplements the HLM book first pub­
lished by Bryk and Raudenbush (1992) and revised by Raudenbush and 
Bryk (2002). 

GLIMMIX 

GLIMMIX is a SAS macro that makes use of the MIXED procedure from 
SAS for linear mixed models, in order to estimate GLMMs. It is based on 
an algorithm proposed by Wolfinger and O'Connell (1993). Altough GLIM­
MIX can handle only binary data, we discuss the program here because it 
is an alternative for the NLMIXED procedure within SAS, and because it 
is used in one of the previous chapters. 
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• Models and estimation 
An important limitation is that GLIMMIX cannot be used for multicate­
gorical data. GLIMMIX uses PQL by default, but MQL is also available. 
Because GLIMMIX is based on the MIXED procedure it also benefits from 
the interesting features of this procedure. For example, both ML and REML 
are supported, and serial correlations can be dealt with. 

• Data format and commands 
The data set must be structured as a univariate data set (vertical string 
format) with one column for the responses and furt her columns for the 
predictors. However, one item indicator variable is used, indicating the 
number of each item, instead of binary item indicators. SAS will implicitly 
generate a set of binary item indicators. The body of the macro consists 
of syntax from the MIXED procedure surrounded by statements specific 
to the GLMM settings, to define the error structure and the link function. 
Batch mode is used for the commands. 

• A vailability and information 
The macro can be downloaded from the homepage of SAS: ftp: / /ftp. sas. 
com/techsup/download/stat. It requires SAS version 6.08 or higher. The 
files are named glmmXXX. sas, where XXX refers to the version of SAS. 
Further information regarding the MIXED procedure statements and the 
GLIMMIX macro can be found in Littell, Milliken, Stroup, and Wolfinger 
(1996). 

NLMIXED procedure of SAS 

The NLMIXED procedure is a very general procedure for GLMMs and 
NLMMs (SAS Institute, 1999). 

• Models and estimation 
NLMIXED adopts a very large variety of functions in the structural part of 
the model, so that, for example, the 3PL model can be estimated. Its major 
limitation is that it can handle only one level ofrandom effects (i.e., 2-level 
data). Because it uses Gaussian quadrature, the procedure takes quite a 
lot of time, especially when the number of persons is high. Often good 
initial values are required when the models are complicated. Convergence 
problems occur now and then, as well as negative variance estimates. For 
the latter problem, it sometimes helps to reparameterize the model using 
a fixed variance, but a free overall discrimination value. 

• Data format and commands 
The data need to be imported into SAS and organized in a vertical string 
format, in an array with as many rows as the number of persons times the 
number of items. For each observation, the values of the predictors need 
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to be specified in the following columns. The data have to be sorted by 
person. Batch mode is used for the commands. 

• A vailability and information 
The NLMIXED procedure is available from version 8.0 of SAS onwards. It 
is part of the software product SAS jSTAT. See http: / / support. sas . com/ 
software/release 82/. Information on SASjSTAT can be found at http: 
//support.sas.com/rnd/app/da/stat.html. 

GLLAMM 

Generalized linear latent and mixed models (GLLAMM) (Rabe-Hesketh, 
Pickles, & Skrondal, 2001) is a program written as part of the statistical 
software package STATA. It combines features of a program for generalized 
linear mixed models and for structural equation models. 

• Models and estimation 
In comparison with the NLMIXED procedure from SAS, GLLAMM is 
not limited to 2-level data, it can estimate discrete distributions (semi­
parametric estimation) for random effects, and it can be used in an ele­
gant way for structural equations modeling, so that one can regress ran­
dom person effects on other random person effects. In comparison with 
the NLMIXED procedure, GLLAMM is limited only in that effects other 
than linear and bilinear person effects (unweighted and weighted Os, respec­
tively) need to be fixed. For example, a random-effect guessing parameter 
is not possible. In comparison to the multilevel software, GLLAMM is lim­
ited mainly in that it cannot deal with crossed random effects. To conclude, 
GLLAMM combines the main attractive features of three traditions: mul­
tilevel modeling, generalized linear mixed models, and structural equation 
modeling, but some models that are specific to the software from these 
traditions are lacking. GLLAMM shares with the NLMIXED procedure its 
direct maximization through adaptive or nonadaptive Gaussian quadra­
ture, and therefore can be very slow. 

• Data format and commands 
Before running GLAMM, the data must be imported into STATA and for­
matted into the vertical string format, with item responses stacked within 
respondents. On each row, the values of the predictors must be given for 
the corresponding observed response. Data in the format of a person-by­
item array can be reshaped with a STATA command. GLLAMM works 
with STATA command files and thus uses batch mode for the commands. 

• A vailability and information 
The program can be downloaded for free at http://www . gllamm. org. Pur­
chasing information for STATA can be found at http://www.stata.com. 
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Information on the program can be found in the manual (Rabe-Hesketh et 
al. , 2001) which can be downloaded from the same website as the program. 
For the models and estimation methods, see Rabe-Hesketh, Pickles, and 
Skrondal (2002, in press), and Skrondal and Rabe-Hesketh (2003). 

MIXOR/MIXNO 

MIXOR (Hedeker & Gibbons, 1996) is a program for generalized linear 
mixed models applied to 2-level ordered-category data, including binary 
data. MIXNO (Hedeker, 1999) is the corresponding program for nominal 
data. 

• Models and estimation 
The forms of nonlinearity in the structural part that the programs can 
handle is limited to bilinearity (as in the 2PL model). For the estimation, 
Gaussian quadrature is used, but only in its nonadaptive version. Unlike 
the previous two programs Fisher scoring is used for the maximization of 
the marginal likelihood. It is worth noting that the covariance structure 
of the random effects is not estimated, but that the program relies on a 
Cholesky decomposition, from which the covariance matrix is calculated 
(without standard errors). 

• Data format and commands 
The input data file must be a standard text file (ASCII), with a vertical 
string format with items nested within persons: one row per response of a 
person to an item, including the response in quest ion and the correspond­
ing values of the predictors. For the commands, batch mode is used. 

• A vailability and information 
The programs are in the public domain and can be downloaded from 
http://tigger . uie. edu/ rvhedeker /mix. html. Manuals containing vari­
ous examples can be downloaded from the same location. A basic descrip­
tive article is the one by Hedeker and Gibbons (1994). 

12.4 Applications 

12.4.1 Options and results 

All six programs were applied to the verbal aggression data set (binary 
data) for the estimation of the Rasch model as described in Chapter 2. 
The options chosen for the different programs are the following: 

MLwiN: PQL2 (with RIGLS), 
HLM: PQL (with ML), 
GLIMMIX: PQL (with REML), 
NLMIXED:nonadaptive Gaussian quadrat ure (20 nodes), 
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GLAMM: nonadaptive Gaussian quadrature (20 nodes), 
MIXOR: nonadaptive Gaussions quadrature (20 nodes). 

We also utilized other options for some of the programs, but the results 
of these options are not reporled in Table 12.3, and only discussed in the 
text. 

TABLE 12.3. Results of applying the six programs for estimation of the Rasch 
model. Estimates of item parameters and their standard errors and of the variance 
of the intercept and its standard error (verbal aggression data). 

Items ML· HLM GLIM· NL- GL- MIXOR 
wiN MIX MIXED LAMM 

BUB Want Curse -1.22 -1.17 -1.17 -1.22 -1.23 -1.23 
(.16) (.22) (.16) (.16) (.16) (.19) 

2 BUB Want Seold -.56 -.54 -.54 -.57 -.57 -.57 
(.15) (.21) (.15) (.15) (.15) (.18) 

3 Bus Want Shout -.08 -.08 -.08 -.09 -.09 -.08 
(.15) (.21) (.15) (.15) (.15) (.17) 

4 Train Want CurBe -1.74 -1.67 -1.67 -1.75 -1.76 -1.75 
(.17) (.22) (.17) (.17) (.17) (.20) 

5 Train Want Seold -.71 -.68 -.68 -.71 -.71 -.71 
(.15) (.21) (.15) (.15) (.15) (.19) 

6 Train Want Shout -.01 -.01 -.01 -.02 -.02 -.02 
(.15) (.21) (.15) (.15) (.15) (.18) 

7 Store Want Curse -.53 -.51 -.51 -.53 -.54 -.53 
(.15) (.21) (.15) (.15) (.15) (.17) 

8 Store Want Seold .69 .66 .66 .68 .68 .68 
(.16) (.21) (.15) (.15) (.15) (.17) 

9 Store Want Shout 1.53 1.46 1.46 1.52 1.52 1.52 
(.17) (.22) (.17) (.17) (.17) (.19) 

10 Can Want Cune -1.08 -1.03 -1.03 -1.09 -1.09 -1.09 
(.16) (.21) (.16) (.16) (.16) (.18) 

11 CaU Want Seold .35 .33 .33 .34 .34 .34 
(.15) (.21) (.15) (.15) . (.15) (.17) 

12 CaU Want Shout 1.04 1.00 1.00 1.04 1.04 1.04 
(.16) (.21) (.16) (.16) (.16) (.19) 

13 Bus Da Curse -1.22 -1.17 -1.17 -1.23 -1.23 -1.23 
(.16) (.22) (.16) (.16) (.16) (.19) 

14 Bus Da Seold -.39 -.37 -.37 -.40 -.39 -.40 
(.15) (.21) (.15) (.15) (.15) (.19) 

15 BUB Da Shout .87 .83 .83 .87 .87 .87 
(.16) (.21) (.15) (.16) (.16) (.18) 

16 Train Da Curse -.87 -.83 -.83 -.87 -.88 -.88 
(.16) (.21) (.15) (.15) (.16) (.18) 

17 Train Da Seold .06 .05 .05 .05 .06 .05 
(.15) (.21) (.15) (.15) (.15) (.18) 

18 Train Da Shout 1.48 1.42 1.42 1.48 1.48 1.48 
(.17) (.22) (.16) (.17) (.17) (.20) 

19 Store Da Curse .21 .20 .20 .21 .21 .21 
(.15) (.21) (.15) (.15) (.15) (.17) 

20 Store Do Seold 1.50 1.44 1.44 1.50 1.50 1.50 
(.17) (.22) (.17) (.17) (.17) (.19) 

21 Store Da Shout 2.96 2.84 2.84 2.97 2.97 2.98 
(.23) (.27) (.22) (.23) (.23) (.25) 

22 Can Do Curse -.71 -.68 -.68 -.71 -.71 -.71 
(.15) (.21) (.15). (.15) (.15) (.18) 

23 Can Da Seold .38 .37 .37 .38 .38 .38 
(.15) (.19) (.15) (.15) (.15) (.18) 

24 Can Da Shout 1.99 1.91 1.91 2.00 2.00 2.00 
(.18) (-) . (.18) (.18) (.18) (.20) 

Variance of the intercept 1.87 1.69 1.70 1.98 1.98 1.98a 
(.17) (.15) (.17) (.21) (.21) (-) 

Note a: The standard deviation is estimated, rather than the variance, and this standard 
deviation has a standard error of .07. 

Table 12.3 shows the parameter estimates and their standard errors. The 
parameter estimates displayed are for the item parameters (in the minus 
parametrization - higher means lower logit values), and the variance ofthe 
random intercept. 
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HLM is different from the rest, in that I - 1 item indicators are used (23 
instead of 24), plus a constant predictor. This yields 23 estimates of the item 
effects, with the effect ofthe 24th item (i.e., the reference item) fixed to O. In 
order to derive item parameter values for the same parametrization as used 
for the other programs, one must add the effect of the constant predictor to 
each of the 23 estimated item effects and to the constrained value 0 for the 
24th item. The standard errors reported in Table 12.3 are those of the 23 
estimates before the reparametrization, which explains why no standard 
error is given for the reference item (item 24). However, these standard 
errors are no longer valid after the reparametrization. The item parameter 
estimates after reparametrization are the sum of two estimates: an item­
specific estimate and an estimate of the effect of the constant predictor. 
The variance of this sum depends on the variance of each of the terms 
(vari and varc, respectively) and on their covariance (covaric). The new 
standard errors are the square root of vari+ varc+ 2covaric. When this 
formula is applied, the resulting standard errors have values that are about 
equal to those obtained with most other programs. 

12·4.2 Discussion 01 the results 

As can be seen in Table 12.3, the results are highly similar for all six 
programs. For the three programs that make use of Gaussian quadrature 
(NLMIXED, GLLAMM, MIXOR), the estimates are nearly identical. The 
only difference is the somewhat higher SE of the estimates from MIXOR. 
Note that in general the SEs are slightly larger for more extreme estimates. 
This makes sense because these estimates are based on less information. 

Note that when an adaptive procedure was used for the Gaussian quadra­
ture with NLMIXED, the results were again highly similar, with differences 
that were not larger than .01 for the item parameter estimates and the 
standard errors (these results are not shown in Table 12.3). However, the 
estimated variance was somewhat smaller: 1.92 (.20) instead of 1.98 (.21). 
GLAMM also has the possibility to use adaptive Gaussian quadrature. 

The results we obtained for the other three programs diverge a little 
more among one another, and also differ slightly from those we already 
discussed. In fact, the estimates of the item parameters are identical for 
HLM and GLIMMIX. The estimates for the variance differ only slightly for 
these two programs. All estimates (of the item parameters and the variance) 
are somewhat less extreme than those obtained with Gaussian quadrature. 
This is due to the well-known downward bias of PQL. For both HLM and 
GLIMMIX, a PQL method was used. 

The bias is much smaller and hardly noticeable in the item parameters 
when MLwiN is used (with PQL2), as may be noted in Table 12.3. For the 
variance, values between the estimates with PQL and Gaussian quadrat ure 
are obtained (1.87 is greater than 1.69 and 1.70, and less than 1.98). The 
better results must be attributed to the PQL2 method, since when MLwiN 
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is used with PQL instead, the MLwiN estimate of the variance is also 
1. 70. On the other hand, when the Laplace6 method is used for HLM, the 
estimate of the variance is 1.92. This latter value is identical to the value of 
the variance estimate we obtained when using adaptive quadrature. This 
is perhaps not surprising since adaptive quadrature "can be thought of 
alternatively as the form of 'rn-order Laplace approximation' " (Liu & 
Pierce, 1994, p. 626). 

Note that for MLwiN and GLIMMIX a restricted approach was used (the 
analogon of REML for linear mixed models). When the equivalent of a fuH 
maximum likelihood method was used, the downward bias was a little bit 
larger, but the differences were never larger than .01. 

FinaIly, note that the standard errors of the item parameter estimates 
are somewhat larger when HLM is used, but this must be attributed to 
the fact that they are actually the standard errors for the estimates of the 
corresponding 23 item effects, with item 24 as the reference level. 

The results are very clear. The estimations based on Gaussian quadrature 
for numerical integration (NLMIXED, GLLAMM, MIXOR) agree with one 
another very weIl. The methods that are based on an approximation of 
the integrand also show a high degree of convergence when PQL is used 
(MLwiN, HLM, GLIMMIX). They also show a moderate downward bias. 
However, this bias is largely reduced for the PQL2 method (MLwiN), or 
when Laplace6 is chosen (HLM). For the sake of completeness, we can add 
that when a Bayesian estimation was carried out (using BUGS), the results 
were nearly identical to those of the Gaussian quadrat ure methods. 

We do not claim any generality for the findings from these results, since 
only one data set was analyzed based on only one model. An extensive 
simulation study would be a better basis far a generalization. However, the 
results are in line with the expectations. 
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Afterword (regarding the 
verbal aggression data) 
The verbal aggression data set has been repeatedly analyzed throughout 
this volume for illustrative reasons. Various aspects of the data have been 
revealed, but there was no point in the text where it was our aim to find 
the ultimate 'best' fitting model for the data. Nor have we tried to combine 
the various findings into one improved model by paying attention to cross­
chapter model selection. Nevertheless, we have learned much about the 
data from the different chapters, so that an integrative summary of the 
results for this data set might prove to be both interesting and educative. 

On the item side, the effects of the items can be quite weH explained with 
the item properties that were used. If the correlation between the Rasch 
model item parameter estimates and those calculated from the LLTM para­
meter estimates is used as an effect size for the relative fit of the two models, 
then the LLTM did very well. However, the goodness of fit of the LLTM 
was lower than that of the Rasch model, based on statistical significance. 
Perhaps some improvement on the LLTM can be obtained by exploring 
interactions between the item properties, and also some improvement can 
be gained by using the crossed random-effects model with item properties 
from Chapter 6. Note also that a strong relation was found between the 
item effects of the do-items and the want-items (see Chapter 9). 

On the person side, there is evidence that a uni dimensional structure 
does not suffice. As shown in Chapters 8 and 10, a multidimensional model 
is required in terms of statistical significance testing, although the gains in 
terms of effect sizes were less dear. It seems that every level of the factors 
in the item design is aseparate though correlated source of individual 
differences, in line with the results from Chapter 1 where the data were 
analysed with a linear mixed model. This means the structure has a rat her 
high dimensionality. As a furt her complication, it is possible that mixt ure 
distributions are needed instead of a normal distribution for the different 
dimensions (random effects), as may be inferred from Chapter 11 (for the 
effect of Other-to-blame vs Self-to-blame). Gender and Trait Anger each 
also seem to play a role in explaining the individual differences. As for 
Gender, the effect is more dearly evident when the three-valued data are 
used. 

As far as person-by-item interactions are concerned, there seems to be 
some DIF, meaning that females are more inhibited than males to actu­
aHy display blaming behaviors in frust rating situations. This DIF cannot 
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be explained as a dimension-specific effect of Gender in the case where 
blaming and doing are included as separate dimensions (random effects), 
since the DIF is evident in the conjunction of both (blaming and doing). 
As an alternative to random effects, one may consider dependence models, 
as in Chapter 7. It was found there that doing is clearly related to wanting, 
but that the association depends on the behavior under consideration. The 
association is not as strong for blaming behaviors than for expressive be­
haviors, perhaps because inhibition plays less of a role for the latter. This 
is again a complication for a simple multidimensional model, because it 
means that the correlation between two types of items differs depending on 
an item property. A common type of person-by-item interaction is that a 
second item parameter can improve the goodness of fit, as in the 2PL. This 
is also the case for our data set, as shown in Chapter 8. However, if this is 
done for all dimensions that would be needed to capture all dependencies, 
then a very complex model would be obtained. 

In sum, at the end of this volume we have no final best model for the 
verbal aggression data. It was not our explicit aim to obtain such a model, 
but having gone through the various chapters, it seems that a very complex 
and high-dimensional model would be required, although it is unclear yet 
exactly what all of the elements of this model would need to be. Especially 
in the case where mixt ure distributions were required in a high-dimensional 
space, in addition to other complexities, it would be a difficult task to es­
timate the ultimate model and to compare it for its goodness of fit with 
many other somewhat less complicated models. We leave it as an open chal­
lenge to find an aIl-encompassing model. We may have opened Pandora's 
box by the broadness of the framework, which should not have been a sur­
prise knowing the complexities of the psychological reality we were seeking 
to model. One possible way to keep the complexities under control would 
be to investigate how weIl one can trust a wrongly specified (too simple) 
model for inferences on some aspects of the data, or which approaches can 
be used to make simplifying assumptions about aspects one is not directly 
interested in. Examples of the latter approaches are marginal modeling (as 
discussed in Chapters 4 and 10), and multivariate probit models (discussed 
in Chapter 10). 

Paul De Boeck & Mark Wilson 
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