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In this article we show how certain analytic problems that arise when one 
attempts to use latent variables as outcomes in regression analyses can be 
addressed by taking a multilevel perspective on item response modeling. 
Under a multilevel, or hierarchical, perspective we cast the item response 
model as a within-student model and the student population distribution as 
a between-student model. Taking this perspective leads naturally to an 
extension of the student population model to include a range of student-
level variables, and it invites the possibility of further extending the models 
to additional levels so that multilevel models can be applied with latent 
outcome variables. In the two-level case, the model that we employ is 
formally equivalent to the plausible value procedures that are used as part 
of the National Assessment of Educational Progress (NAEP), but we present 
the method for a different class of measurement models, and we use a 
simultaneous estimation method rather than two-step estimation. In our 
application of the models to the appropriate treatment of measurement error 
in the dependent variable of a between-student regression, we also illustrate 
the adequacy of some approximate procedures that are used in NAEP. 

Over recent years the development of models for multilevel, or hierarchical, 
data structures has been an active area of methodological research (for recent 
summaries see Bock, 1989; Goldstein, 1987; Raudenbush, 1988). These 
models have developed from the recognition that in many research settings 
data are collected in a hierarchical form. School students are nested within 
schools, schools within school systems, and so on. Models that recognize 
these hierarchies have proven useful for solving the technical problems that 
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arise when traditional approaches and models are applied to nested data, and 
they have led to an improved conceptualization of research questions in 
hierarchical settings (Raudenbush, 1988). 

While it appears that the first and perhaps the motivating applications of 
hierarchical models in education were to situations where students are nested 
within classrooms, it is clear that the conceptualization of data structures as 
hierarchical can also be of value in other contexts: for modeling growth 
(Bryk & Raudenbush, 1987; Goldstein, 1987), in fitting random effects models 
in meta-analysis contexts (Raudenbush & Bryk, 1985), and for errors-in-
variables regression analysis (Adams, 1989; Goldstein, 1987). Work on non­
linear multilevel models has also been done (Anderson & Aitkin, 1985; 
Goldstein, 1991; Stiratelli, Laird, & Waire, 1984; Wong & Mason, 1985), 
although this has primarily occurred outside of the educational research 
literature. 

In psychometrics the recently developed structural measurement models 
and their accompanying marginal maximum likelihood estimation methods 
(Bock & Aitkin, 1981; Bock & Lieberman, 1970) are also nonlinear multilevel 
models. These models, which have been strongly advocated (e.g., Holland, 
1990), require the assumption that individuals have been sampled from a 
population in addition to the specification of a model for generating item 
responses. The combination of these two models can be viewed as a nonlinear 
multilevel model. In the multilevel formulation the item response model can 
be viewed as a within-student model, while the population model can be 
viewed as a between-student model. 

Although motivated and cast somewhat differently, structural measurement 
models of the type we discuss have been extensively developed and applied 
as part of the National Assessment of Educational Progress (NAEP) (Beaton, 
1987; Mislevy, 1991; Zwick, 1992). In this article we illustrate the connection 
between hierarchical modeling and the structural measurement models as 
applied in NAEP by describing the structural measurement models as two-
level nonlinear multilevel models. Due to the fact that we use a model slightly 
different from that used in NAEP and the previous relative inaccessibility of 
the detailed material on the NAEP estimation, we describe the model and 
its estimation in a little bit more detail than some may regard as necessary. 
We report some simulations to illustrate and test the estimation strategy. In 
the final section we use the model to fit errors in variables regression models 
to five real data sets where the independent variable is latent. For each of 
the five data sets we compare the results to those that would have been 
achieved if the error had been ignored and to those that would have been 
achieved by secondary analyses if they had used plausible values. 

A Two-Level Formulation 

The description of a structural item response model requires the specifica­
tion of two components—a conditional item response model/x(x; £10) and 
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a population model fQ(Q; a), where x is a vector of observations on items, i; 
is a vector of parameters that describe those items, 9 is a latent random variable 
(typically ability), and a symbolizes a set of parameters that characterize the 
distribution of 9. The population model describes the between-student varia­
tion in the latent trait of interest, and the conditional item response model 
describes the probability of observing a set of item responses conditional 
upon the level of an individual on the latent trait of interest. In the case 
where the population is regarded as normal, a = (JUL, a2). This is a structural 
model because 9 is a random variable, that is, it does not have a fixed 
unknown value. When the 9 are fixed, the model is a functional model and 
would be written/x(x; £, 9) (de Leeuw & Verhelst, 1986). 

For a structural model the probability of the response vector x of a student 
randomly sampled from the population is 

/x(x; 6, o) = I /x(x; gl8)/e(8; a) </8, (1) 

and it follows that the likelihood is 

A = EI /x(x„; & a), (2) 
«=i 

where N is the total number of sampled students. 
Note, however, that/x(x„; £19) can be considered as a within-student model. 

It is the model that describes the responses of student «. If JUL is the mean of 
the population distribution, /e, then we can write 

e„ = (JL + E„ (3) 

where the distribution of En is the same as that for 9„, but translated to have 
a mean of zero. 

Equation 3 is a very simple linear model for variation between students in 
9. Hence we identify the structural model as a two-level nonlinear hierarchical 
model. In this case the population is undifferentiated, in the sense that every 
individual is regarded as sampled from an identical population distribution. 

A natural extension of (3) is to replace the mean, |x, with the regression 
model Y,',p, where Y„ is a vector of w, fixed and known values for student 
n, and p is the corresponding vector of regression coefficients. For example, 
Y„ could be constituted of student variables such as gender, socioeconomic 
status, and major. Then the population model becomes 

9„ = Y;p + Em (4) 
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where we assume that the En are independently and identically normally 
distributed with mean zero and variance a2 so that (4) is equivalent to 

/e(e„;Y„, p,a2) = (2w2)- , / 2exp ~2? (6" " YiP)'(8" ~ Y ;P) (5) 

a normal with mean Y,',P and variance a2. If (5) is used as the population 
model, then the parameters to be estimated are p, a2, and £. 

Both (3) and (4) can be generalized by allowing alternative distributions 
for En. For example, a step distribution that is specified by a set of nodes 
and weights (or densities) for each node was suggested by Tjur (1982) and 
Cressie and Holland (1983) and is implemented in BILOG (Mislevy & Bock, 
1983) for (3) but not (4). In this article we will, however, restrict our attention 
to the normal case. 

We see four potential advantages in extending the two-level structural 
model to the model with differentiated populations as given in (4). First, 
direct estimation of the population parameters (for example p, a2) from the 
item responses obviates the problem of the bias introduced by two-step 
estimation (Mislevy, 1984), which typically proceeds by estimating person 
abilities and then using them in subsequent analyses under the assumptions 
of independence and identically distributed error terms. It is this motivation 
that has driven the development of models of this type for use in NAEP 
(Mislevy, Beaton, Kaplan, & Sheehan, 1992). Second, the use of student-
level variables, Y„, can lead to increased precision in estimation of the item 
parameters, i; (Mislevy, 1987; Mislevy & Sheehan, 1989a). Third, use of the 
same information can lead to increased precision in the estimation of person 
(ability) parameters, 9„. That is, when individual abilities are estimated as 
the expected values of the marginal posterior, they will have a smaller mean 
squared error when the collateral information is employed. However, 
employing collateral information in this way is not without certain difficulties: 
When collateral information is used, point estimates of ability are biased, 
and, as Mislevy (1987) has stated, they are not "unequivocally 'better' for 
all applications" (p. 90). Finally, Mislevy and Sheehan (1989b) have shown 
that to ensure consistent item parameter estimates, collateral information must 
be used in estimation where it was used in item selection. For example, when 
students at different grade levels are given different test forms, matched to 
their expected abilities through age or grade information, subsequent marginal 
maximum likelihood (MML) parameter estimation will be inconsistent unless 
the age or grade level information is employed as a collateral variable. 

The Item Response Model 
For the item response model we will restrict our attention to the random 

coefficients multinominal logit (RCML) recently described by Adams and 
Wilson (1996). We use the RCML because it is a very general form of the 
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Rasch model encompassing the simple logistic model (Rasch, 1980), the 
rating scale model (Andrich, 1978), the partial credit model (Masters, 1982), 
FACETS (Linacre, 1989), linear logistic models (Fischer, 1983), and the 
ordered partition model (Wilson, 1992; Wilson & Adams, 1993) and may be 
used to develop many others. In addition to this generality, the RCML inherits 
the fundamental measurement properties of the Rasch family. Mislevy (1985) 
presents a similar procedure for the three-parameter logistic model, and it is 
also possible to use Muraki's (1992) generalized partial credit model with a 
joint estimation algorithm like the one we detail below. 

To describe the RCML we suppose we have / items indexed / = 1, . . . , 
/, and each item admits Kt + 1 response alternatives indexed k = 0, 1, . . . , 
Kt. We then use the vector valued random variable X, to indicate the K{ + 
1 possible responses to item /. That is, X- = (Xn, Xi2, . . . , XiKi), where 

_ f 1 if response to item / is in category j 
ij [0 otherwise 

A response in category zero is denoted by a vector of zeros. This effectively 
makes the zero category a reference category and is necessary for model 
identification. The choice of this as the reference category is arbitrary and 
does not affect the generality of the model. We collect the X, together into 
a single vector X' = (XJ, X2, . . . , X/), which is a vector valued random 
variable that is called a response pattern. Particular instances of each of 
these random variables are indicated by their lowercase equivalents: x, x„ 
and xik. 

The items are described by p difficulty parameters which are given by 
the vector £' = (^ , £2, . . . , £p)- Linear combinations of these are used in 
the response probability model to describe the empirical characteristics of 
the response categories of each item. These linear combinations are defined 
by the design vectors ajk (j = 1, . . . , / ; / : = 1, . . . , Kt\ which can be 
denoted by the design matrix A' = ( a u , a12, . . . , a1A:i, a2i, . . . , a2A%,, . . . , 
a71, . . . , aIK/). This approach to imposing a linear model on the item 
parameters allows us to write a general model that includes the wide class 
of existing Rasch models mentioned above and to develop new types 
of Rasch models, for example, the item bundles models of Wilson and 
Adams (1995). 

An additional feature of the RCML is the introduction of a scoring function 
which allows the description of the score, or performance level, that is 
assigned to each response type. To do this we introduce the notion of a 
response score bi} which gives the performance level of an observed response 
in category j of item /. The by can be collected in a vector as b ' = 
(bu, 612, . . . , bXKv b2h b22, • • •, b2Kv . . . , bIU . . . , 6/K,). (By definition, 

the score for a response in the zero category is zero, but other responses may 
also be scored zero). 
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In the majority of Rasch model formulations there has been a one-to-one 
matching between the category to which a response belongs and the score 
that is allocated to the observation. In the simple logistic model, for example, 
it has been standard practice to use the labels "0" and " 1 " to indicate both 
the categories of performance and the scores. A similar practice has been 
followed with the rating scale and partial credit models, where each category 
of performance is seen as indicating a different level of performance. The 
use of b as a scoring function allows a more flexible relationship between 
the quality of a response and the level of performance that it reflects. 
Examples of where this is applicable are given in Kelderman (1989) and 
Wilson (1992). 

We now write the RCML item response probability model as 

exp(fc/78 + a-.£) 
P r ^ = lie) = Ki

 FV u 1&-, 
2 exp(M + ai© 

and a response vector probability model as 

Pr(X = xl8) = ¥(8, £)exp{x'(b8 + A£)} 

= /x(x;gl8), (6) 

with ¥(8 , © = 2 exp{z'(b8 + A©} 
LzeO 

and where ft is the set of all possible response vectors. 

Estimating the Model 

In this section we show how either a Newton-Raphson method or the EM 
algorithm of Dempster, Laird, and Rubin (1977) can be used to jointly produce 
maximum likelihood estimates of the item and population parameters. By 
jointly estimating the item parameters and population parameters, our 
approach differs slightly from current practice in NAEP (Johnson, Mazzeo, & 
Kline, 1993; Thomas, 1992). To ease the computational burden, NAEP uses 
a two-step approach where the parameters are first estimated without the use 
of conditioning variables and in a second phase the item parameters are fixed 
at their estimated values while the population parameters are estimated as 
an intermediate step in the generation of plausible values.1 In our case, the 
use of Rasch-type models and the restriction to one dimension make it easier 
to jointly estimate the items and population parameters. 

• 
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If we observe data from a sample of N students and denote all of the 
observed data (that is, item responses and student-level data) as X, then the 
likelihood induced by (1) is 

A(g, p, a2IX) = f [ f A(x„; €ien)/e(e„; Y„, p, a- ) d&m (7) 

and the log likelihood is 

X(& P, a2IX) = 2 log f /x(x„; gie„)/e(e„; Y„, p, a2) dQn. (8) 

Differentiating with respect to each of the parameters and defining the mar­
ginal posterior as 

/je(en; Y„, g, p, CT2IX„) 
/x(x„; £ien)/9(8„; Y„, p, a2) 

/x(x„; Y„, g, p, a2) 

provides the following likelihood equations: 

f | = ̂  1 2 log [ /x(x„; gie„)/e(ejYm p, a2) ^e„J 

= y 1 f a/»(x„; W f_(a IV ft „i, 

)Jtl,/,(x,,;Yll,|,p,a2)Jak 

3 log/x(x„; £ie„) 

-/e(6nIY„, p, a2) </8„ 

he(Qn; Y„, g, p, a2lx„) dQn 
N f 

= 2 f Ti\ x»(be» + A $ ~ lo§ 2 exp z'(b6„ + A© 
"=i Je„ d5 L left J 

X /j9(e„; Y„ g, P, a2lxn) dQn 

N 

= 2 
n=\ 

A'x„ - A'^(0n, g) 2 z exp z'(be„ + A© 
zefl 

X ^,(6,; Y„, g, p, ff2lx„) d8„ 

:„ - I £z(zl8„) h,(Qn; Y„, g, p, a2lxn) de, 
AT 

= A' 2 

(9) 

= 0, (10) 
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where £z(zl6„) = ¥(8n , © 2 z exp{z'(b6n + A£)}; 
zel l 

3? „=i Je„ dP 

= a"2 2 f (YA - Y X P ) h»(Qn; Y„, g, p, a2lx„) </e„ 

= ^"2 2 { f Y A Mn, Y„, & p, a2lx„) d%n - Y ^ p } 

= a"2 2 I f Y A ^ e B ; Y„, £, p, a2lx„) Mn J 

- a-2 £ Y„Y;P 
n = l 

{ N _ N ] 

1 YA - 2 Y„Y;P 
n=l n = \ J 

= 0, (11) 

where 0„ = | O A A ; Y„, g, p, a2lx„) rf8„; and 

ax £ f a iog/9(e„iY„, p, a2) N f 

11=1 Je d<Jl
 n=\ L dv 

Ae(6„; Y„, i P, cr2lxn) rf6„ 

= 2 f " A [CT2 " (0n - Y;p)2] /ie(6n; Y„, g, P, or2lx„) </6„ 

= "^4 [^ " i 2 f (G" ~ Y;iP)2 ^ 6 » ; Y « €. P> ^IX») ^ 

= 0. (12) 

To jointly solve these likelihood equations, we have considered a Newton-
Raphson algorithm and an EM algorithm. In our implementations, both algo­
rithms require the hessian matrix, the derivation of which we have presented 
in the Appendix. The Newton-Raphson algorithm requires the calculation 
and inversion of the expected hessian at each iteration, but with the EM 
algorithm the hessian is calculated and inverted only at the solution to provide 
asymptotic standard errors for the parameter estimates. 
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For the Newton-Raphson algorithm, let £' = (£', (J\ a2) be the vector 
containing all of the parameters, and then define £(/) as the parameter estimates 
after iteration J, £(0) as initial estimates of the parameters, S(/) as the scores 
vector evaluated at £(/), and E(/) as the hessian evaluated at £(/). Then the 
Newton equation, 

r(/'+i) = m + s ( / )E ( / r l, 

is used to iterate to a solution. In practice we have found this method to be 
somewhat unstable, and when it does converge each iteration can be quite 
time consuming. 

Our current preferred strategy is to use the EM algorithm beginning 
with initial estimates £(0) and using (9) to calculate a provisional marginal 
posterior. This is the E-step of the algorithm. The likelihood equations (10), 
(11), and (12) are then solved, treating the posterior as known to produce 
updated parameter estimates. This is the M-step of the algorithm. Expres­
sions equivalent to these are reported in Mislevy (1984, 1985) and 
Thomas (1992). 

Because the integrals in the likelihood equations cannot be analytically 
simplified, we approximate them as follows. Let @b @2> • • • > ©Q be a 
set of fixed grid points with a constant difference between them, so that 
©z+i ~ ©i = Ae. Then the integral in likelihood equation (10) can be approxi­
mated using 

2 ( J £z(zl6„) /ie(e„; Y„, g, p, a2lx„) dQn) 

n=\ q=\ 

and solved using a Newton-Raphson routine. 
Similar approximations to the mean and second moments of the posterior 

are given by 

6„ = [ 6n Ae(eB, Yn, g, P, a2lx„) dQn 

q=\ 
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and 

f 62 /ie(e„, Y„, £ p, a2lx„) dQn ~ 2 &M% Yn, g, p, a2lx„)Ae, 

yielding 

and 

*2 = 7, 2 i (©, - Y3) 2 Ae(@,; Yn, £ P, a2lx„)Ae 
W n=\ q=l 

as computational formulas for (11) and (12). Similar approximations are used 
in the calculation of the hessian. After using an EM algorithm to compute 
maximum likelihood estimates for £, p, and a2, we calculate the negative 
inverse of the hessian to provide an asymptotic variance-covariance matrix 
for the parameter estimates. 

Parameter Recovery 

Simulation 1 

To verify our approach to estimation, we have undertaken some exploratory 
simulations. In each of our simulations we have used 100 replications. While 
somewhat arbitrary, our choice of 100 replications was judged to be sufficient 
to provide us some basic empirical information with regard to the properties 
of the estimators, and the algorithm as we have implemented it. 

In the first simulation we considered the case of a sample of 500 students 
responding to a partial credit test of five items, three of which have three 
response categories and two of which have four response categories. A single 
predictor variable Y that was correlated 0.90 with the latent ability variable 
6 was assumed. This configuration is unusual in that it corresponds to a case 
where the magnitude of the error in the outcome variable is large and the 
correlation between the latent ability and another known variable is very 
informative about the latent ability. As an example, it provides an extreme 
illustration of the difference between a two-step approach to estimation (i.e., 
an approach in which a measurement model is first fitted ignoring the collat­
eral variable Y and the regression of 0 on Y is then undertaken) and a one-step 
approach (i.e., joint estimation of the measurement and regression models). 

Each simulated data set contained 500 simulated students. To simulate a 
latent ability 0„ and a collateral variable Yn for each student, n = 1, . . . , 
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500, we began by randomly generating a pair of independent unit normal 
deviates, sn and tn. Applying the linear transformations 

8„ = J$5sn + JSJ5tH 

and 

Yn = ^95sn - JSJ5tH9 

we obtained 8 and Y values with the desired correlation of 0.90. Item responses 
for each student were generated by assuming the RCML and the generated 
latent ability values for each student and the set of item parameters as given 
in Table 1. For the simulated values of 6 and Y, it is easy to show that the 
generating model is 

6n = p0 + ViYH + em 

TABLE 1 
Generating values, means of recovered values for Simulation 1 

Mean of 
estimated 

Ratio of 
sampling 
variance 

to 
Generating Mean of Sampling error estimated 

Parameter value estimates Difference variance variance variance 

€i s 8i i 1.226 1.212 -0.014 0.022 0.022 0.986 
& = S12 0.595 0.597 0.002 0.012 0.012 0.989 
& - S21 0.998 0.992 -0.006 0.018 0.017 1.029 

£4 = $22 -0.103 -0.106 -0.003 0.012 0.013 0.935 

fe — $23 -2.966 -2.987 -0.021 0.066 0.052 1.271 

& - 831 1.575 1.588 0.013 0.017 0.016 1.078 
7̂ = 83 2 -1.828 -1.844 -0.016 0.025 0.023 1.108 

£7 s 833 -1.017 -0.999 0.018 0.049 0.040 1.220 
& — &4J 1.168 1.176 0.008 0.021 0.014 1.447 
€l0 — 84 2 -1.177 -1.198 -0.021 0.012 0.014 0.838 
€l 1 — 851 0.093 0.103 0.010 0.017 0.024 0.716 
€l2 = $52 0.432 0.434 0.002 0.026 0.026 0.987 
Po 0.000 -0.004 -0.004 0.001 0.001 0.671 
Pi 0.900 0.904 0.004 0.002 0.002 1.316 

-> 0.190 0.199 0.009 0.002 0.002 1.279 

Note. Hotelling's T2 for bias is 1.10 on 15, 85 df(n.s.). 
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where 0O = 0. Pi = 0.9, and en ~ Af(0, 0.19). Furthermore, the model 

9„ = a0 + en, 

where a0 = 0 and En ~ N(0, 1.0), also holds. 
We call the first of the above models the conditional model and the second 

the unconditional model. In each of the 100 replications both the conditional 
and unconditional models were fitted to the data. Expected a posteriori (EAP) 
predictions of ability were made from both models, and the unconditional 
EAP predictions were regressed onto Y using ordinary least squares. 

In Table 1 we present the generating values for the parameters in the 
conditional model, the mean of the recovered values, the difference between 
the generating value and the mean of the recovered values, the between-
replication variance in the parameter estimates, the mean of the asymptotic 
estimates of the parameter estimate variance, and the ratio of the sampling 
variance to the asymptotic estimates of the error variance. The labeling of 
the parameters with &,-,• is given to make the connection between the £ parame­
ters and the usual partial credit model notation (Masters, 1982). 

The result of a Hotelling's T2 test, which tests the hypothesis that the 
expected differences between generating and estimated values are all zero, 
is reported at the bottom of the table. This F value is not significant, and we 
accept a hypothesis of no bias in the parameter estimates. The results do, 
however, suggest some caution with regard to the use of the asymptotic 
approximation to the error variances. The range of the variance ratios is 0.671 
to 1.447; this corresponds to asymptotic approximations to the standard error 
that vary from underestimation by about 20% to overestimation by about 20%. 

Theoretical work (e.g., Mislevy, 1987; Mislevy & Sheehan, 1989a) has 
shown that the use of collateral information will lead to smaller error in the 
estimation of item parameters and reduce the mean squared error on ability 
prediction. The first panel of Table 2 gives the between-replication variance 
in item parameter estimates for the unconditional and conditional models 
and their ratio. The second panel reports the mean squared error in the 
respective EAP ability predictions. The results reported in Table 2 show that 
the extra information provided by the collateral variable Y has a negligible 
effect on the accuracy of item parameter estimates, but does lead to a substan­
tial decrease in the mean squared error in ability predictions. In this simulation, 
the collateral variable is strongly related to the outcome 6 and can therefore 
be expected to lead to improved ability prediction. In subsequent analyses, 
we note the magnitude of the improvement when the collateral information 
is less informative. 

The negligible differences between the item parameter estimates for these 
analyses with and without conditioning variables are consistent with and 
supportive of the current NAEP practice of estimating the items parameters 
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TABLE 2 
Sampling variation in item parameter estimates for conditional and unconditional 
models in Simulation 1 

Sampling 
variance 
from the 

Sampling 
variance 
from the 

Generating unconditional conditional 
Parameter value model model Ratio 

€1 — s„ 1.226 0.022 0.022 1.008 
£2 = §12 0.595 0.012 0.012 1.008 
£3 — §2! 0.998 0.018 0.017 1.011 
€4 = §22 -0.103 0.013 0.013 1.018 
&> = §23 -2.966 0.065 0.052 0.983 
£6 - §31 1.575 0.017 0.016 1.005 
&7 s §32 -1.828 0.025 0.023 0.989 
^7 - §33 -1.017 0.049 0.040 1.010 
& — §41 1.168 0.021 0.014 1.013 
£lO = §42 -1.177 0.012 0.014 0.976 
£ll — §51 0.093 0.017 0.024 0.988 
£l2 = §52 0.432 0.025 0.026 0.991 

Note. Unconditional ability prediction mean squared error = 0.295. Conditional ability predic­
tion mean squared error = 0.133. 

without the use of conditioning variables, excepting those necessary to 
ensure consistency. 

Finally, for this simulation we noted that the mean estimates of the regres­
sion coefficients that result from regressing unconditional predicted values 
of 9 on Y using ordinary least squares are -0.001 and 0.637, and the mean 
R2 is 0.573. This compares with the mean of the one-step conditional model 
estimates for the regression coefficients of -0.004 and 0.904 and a mean R2 

of 0.800 (compared to a generating R2 of 0.810). The difference between the 
slope parameters highlights the attenuation due to measurement error that 
occurs in ordinary least squares two-step analyses. 

Simulation 2 

As the basis for our second simulation, we took the results of the analysis 
of a nine-item partial credit test of student understanding of science concepts 
related to the Earth and its place in the solar system. The development and 
use of the test is described in Adams, Doig, and Rosier (1991). For the 
population model, we used 

e„ = p0 + $^GRADEn + $2SEXn + $3(GRADE*SEX)n + $4SESn + en, 

where en ~ N(0, a2). 

59 



Adams, Wilson, and Wu 

The generating values of the item parameters and the regression coefficients 
for the simulation are reported in Table 3 and were the product of fitting the 
model to the real data set. In simulating 6, the student-level variables, Y, in 
the actual data set and the generating regression parameters were used. The 
sample size for the simulations was 993—the number of students that were 
in the real data set for which we had a set of Y values. 

As was described for the first simulation, each replication of the simulation 
included fitting both a conditional and an unconditional model and an ordinary 
least squares regression of the unconditional estimates of 9 onto the collateral 
information. Additionally, we used an imputation-based approach paralleling 
the NAEP approach. Detailed descriptions of the NAEP methodology are 
provided elsewhere (e.g., Beaton, 1987; Johnson et al., 1993; Zwick, 1992) 
and will not be reported here. It is worth noting, however, that in our imple­
mentation we jointly estimated the item and population parameters before 
drawing the imputations (plausible values), and in evaluating the posterior 
we used a quadrature approach rather than the direct normal approximation 
or an approach with asymptotic corrections (Thomas, 1992). This was feasible 
because, in contrast to NAEP, we were dealing with a single latent ability 
distribution. 

In Table 3 we present the generating values for the parameters in the 
model, the mean of the recovered values, the difference between the generating 
values and the mean of the recovered values, the between-replication variance 
in the parameter estimates, the mean of the asymptotic estimates of the 
parameter estimate variance, and the ratio of the sampling variance to the 
asymptotic estimates of the error variance. 

As was the case in the previous simulation, the Hotelling's T1 test is not 
significant, which suggests unbiased estimators. As we noted for the first 
simulation, the variation in the ratios of the sampling variance to the asymp­
totic estimates of the error variance suggests that some caution will be needed 
in the use of asymptotic estimates of the standard errors. 

In Table 4 we compare the sampling variance of unconditional and condi­
tional estimates of the item parameters and the mean squared errors of the 
ability predictions from the conditional and unconditional models. We note 
that the conditional estimates have a slightly smaller sampling variance than 
the unconditional estimates, and the mean squared error of the ability predic­
tions is smaller for the conditional than the unconditional. The improvement, 
from the unconditional model to the conditional model, in the mean squared 
error of ability predictions is smaller for this simulation than it was for the 
previous simulation. This is because the conditioning variables are less 
strongly related to the outcome variable and because the test is four items 
longer. 

Finally, for this simulation we are able to report three different estimators 
of the regression coefficients and R2: estimates of the regression coefficients 
that result from regressing unconditional predicted values of 0 on Y using 

60 



Multilevel Item Response Models 

TABLE 3 
Generating values, means of recovered values for Simulation 2 

Mean of 
estimated 

Ratio of 
sampling 
variance 

to 
Generating Mean of Sampling error estimated 

Parameter value estimates Difference variance variance variance 

€1 = 811 1.219 1.233 0.014 0.011 0.008 1.342 

£2 = $12 0.597 0.603 0.006 0.005 0.006 0.898 

&3 — &21 0.999 1.008 0.009 0.007 0.007 0.991 

?4 — $22 -0.103 -0.092 0.011 0.007 0.007 0.996 

fe = $23 -2.965 -3.033 -0.068 0.071 0.066 1.081 

& - $31 1.576 1.586 0.010 0.006 0.006 0.920 

£7 = $32 -1.828 -1.834 -0.006 0.016 0.015 1.039 

& = $33 -1.015 -1.023 -0.008 0.053 0.040 1.306 

& — $41 1.168 1.185 0.017 0.006 0.006 1.097 

£10 — $42 -1.177 -1.178 -0.001 0.010 0.009 1.013 

£ll = $51 0.094 0.090 -0.004 0.008 0.009 0.853 

£|2 = $52 0.431 0.425 -0.006 0.011 0.012 0.933 

£l3 = $53 0.409 0.417 0.008 0.010 0.010 0.974 

£|4 = $61 0.860 0.862 0.002 0.006 0.006 1.089 
£l5 = $62 -0.834 -0.835 -0.001 0.009 0.009 1.087 

£l6 = 871 0.084 0.086 0.002 0.012 0.010 1.244 
€l7 = $72 0.277 0.279 0.002 0.014 0.014 1.008 
£l8 = $73 0.940 0.947 0.007 0.010 0.011 0.880 
€l9 — $81 -0.669 -0.661 0.008 0.017 0.019 0.923 
^20 — $82 -0.674 -0.678 -0.004 0.091 0.071 1.290 

& l = $83 3.673 3.685 0.012 0.065 0.058 1.130 
&2 = $91 0.443 0.448 0.005 0.005 0.005 0.911 
£23 = S92 -0.645 -0.657 -0.012 0.010 0.009 1.100 
?24 = $93 -2.784 -2.795 -0.011 0.077 0.097 0.793 

Po -0.780 -0.782 -0.002 0.002 0.002 1.084 

Pi 0.657 0.655 -0.001 0.005 0.005 1.137 
P2 -0.002 -0.006 -0.004 0.004 0.004 1.103 
P3 0.136 0.135 -0.001 0.012 0.009 1.297 
P4 0.378 0.383 0.006 0.001 0.001 1.131 
a2 0.388 0.389 0.001 0.001 0.001 1.067 

Note. Hotelling's T2 for bias is 0.81 on 30, 70 df(ns.). 

ordinary least squares, estimates that come from the conditional two-level 
model, and estimates that are derived from plausible values. 

Table 5 shows that both the conditional two-level estimates and the plausi­
ble value estimates are close to the generating values, while, as expected, 
the OLS estimates underestimate the R2 and the magnitude of the main effects 
Pi, P3, and p4. These two simulations suggest that the EM algorithm that we 
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TABLE 4 
Sampling variation in item parameter estimates for conditional and unconditional 
models in Simulation 2 

Sampling 
variance 
from the 

Sampling 
variance 
from the 

Generating unconditional conditional 
Parameter value model model Ratio 

61 — 811 1.219 0.011 0.011 1.014 
£2 = S12 0.597 0.005 0.005 1.008 
*b = &21 0.999 0.007 0.007 1.008 
*U = 022 -0.103 0.007 0.007 1.010 

£5 — $23 -2.965 0.072 0.071 1.015 

& - 831 1.576 0.006 0.006 1.016 
£7 — 832 -1.828 0.016 0.016 1.010 

£s - 833 -1.015 0.053 0.053 1.014 

£9 — $41 1.168 0.006 0.006 1.013 
£10 — 842 -1.177 0.010 0.010 1.009 

ClI = S5I 0.094 0.008 0.008 1.017 
£l2 — 852 0.431 0.011 0.011 1.003 
Cl3 = 853 0.409 0.010 0.010 1.010 
£14 — 86J 0.860 0.006 0.006 1.013 
Ct5 = $62 -0.834 0.009 0.009 1.011 
€l6 = $71 0.084 0.012 0.012 1.013 
£l7 = 87 2 0.277 0.014 0.014 1.009 
Cl8 = 87 3 0.940 0.010 0.010 1.007 
€l9 = $81 -0.669 0.017 0.017 1.010 
^20 = $82 -0.674 0.092 0.091 1.009 
& l = $83 3.673 0.066 0.065 1.011 
^22 — $91 0.443 0.005 0.005 1.014 
&3 = $92 -0.645 0.010 0.010 1.008 
C24 = 893 -2.784 0.078 0.077 1.014 

Note. Unconditional ability prediction mean squared error = 0.134. Conditional ability predic­
tion mean squared error = 0.122. 

have implemented produces parameter estimates that are essentially unbiased 
when using samples of 500 or more and that the asymptotic standard errors 
are adequate approximations to the variance of the sampling distributions of 
the parameter estimates. These results are consistent with those reported in 
Wu and Adams (1993). 

In comparing unconditional and conditional estimates of the item parame­
ters, we noted that the use of the collateral information has a negligible effect 
on the accuracy of the parameter estimates. For both of the simulations that 
we have reported, we would expect that both the unconditional and the 
conditional estimates would be consistent. We are yet to undertake a simula-
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TABLE 5 
A comparison of the regression parameter estimates that result from the two-
level conditional model, a two-step approach using plausible values, and a 
two-step approach using ordinary least squares 

Two-step 
plausible 

Conditional value Two-step 
Generating two-level based OLS 

Parameter value estimates estimates estimates 

Po -0.780 -0.782 -0.784 -0.718 
Pi 0.657 0.656 0.656 0.508 
P2 -0.002 -0.006 -0.003 -0.005 
03 0.136 0.135 0.134 0.104 
04 0.378 0.383 0.385 0.293 

R2 0.326 0.323 0.303 0.247 

tion that considers a case where the unconditional model would be expected 
to produce inconsistent estimates. The conditions under which this will occur 
are described in Mislevy and Sheehan (1989b). 

While it appears that the collateral information plays only a minor role in 
improving item parameter estimates, it is clear that it can have a significant 
effect upon EAP ability predictions. Employing the collateral information 
has the potential to lead to ability predictions that have a substantially smaller 
mean squared error. Unfortunately, this improvement may be achieved at a 
cost that many would see as fundamental to equitable measurement—ability 
predictions that are independent of any influence beyond the individuals 
responses to the items. In the conditional model, two individuals with identical 
item response patterns can be assigned different abilities if they do not have 
identical collateral information. 

Finally, we note that while the regression parameter estimates based upon 
the imputations are almost identical to those produced by the direct estimation, 
the two-step approaches that use ordinary least squares regression following 
unconditional ability predictions can produce regression coefficients that are 
substantially different from those estimated under the two-level model. For 
simple regression models, traditional attenuation corrections can be applied, 
but there are no simple corrections for regression coefficients when multiple 
predictors are used. Additional analyses are necessary to provide a detailed 
comparison of the direct estimates and those recovered through the use of 
plausible values. Of particular interest is the choice of the number of imputa­
tions to draw. Throughout our work we have followed the NAEP procedures 
of drawing five plausible values. 
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Two Step Versus Two Level: A Comparison of Results 

We now turn to a comparative analysis of five real data sets collected as 
part of the Victorian Science Achievement Study that is reported in Adams 
et al. (1991). In that study, a battery of achievement instruments were adminis­
tered to random samples of students from Victorian schools. To illustrate the 
two-level model, we selected five data sets from the study and analyzed the 
data using three regression methods. The five achievement instruments we 
used were: 

(1) Core, a 15-item multiple-choice test of general science; 
(2) Earth and Space, a 9-item partial credit test of student conceptions of 

the Earth and its place in the solar system; 
(3) Force and Motion, a 9-item partial credit test of student conceptions 

of force and motion; 
(4) Matter, a 9-item partial credit test of student conceptions of the structure 

of matter; and 
(5) Light and Sight, a 10-item partial credit test of student conceptions of 

light and sight. 
For each of the five data sets we fitted an unconditional RCML model, 

produced EAP ability predictions, and then regressed them onto the following 
four demographic variables: 

(1) SEX, students' sex, coded 0 for female and 1 for male; 
(2) GRADE, students' grade level, coded 0 for Grade 5 and 1 for Grade 9; 
(3) SES, a standardized socioeconomic composite made up of parental 

occupation and education; and 
(4) GRADE*SEX, the interaction between GRADE and SEX. 
Second, we fitted the conditional model and obtained direct estimates of 

the regression parameters. Third, we used a plausible value approach. 
The results of these analyses are summarized in Table 6, where for each 

data set we have reported the regression coefficients and f-values that result 
from fitting each of the three models. The results reported in Table 6 are 
consistent with those of our simulations. Broadly speaking, the plausible 
value and two-level conditional approaches produce results that are very 
similar, while the two-level OLS approach yields regression coefficients for 
the main effect that appear to be attenuated. For these particular data sets, 
the attenuation leads to a recognizable underestimation of the direct effects 
that under some circumstances may lead to important differences in the 
substantive interpretation of the results. The relationship between the OLS, 
plausible value, and conditional two-level estimates of the interaction between 
grade and sex are less clear. 

Conclusion 

In this article we have shown how structural Rasch models can be viewed 
as nonlinear multilevel models. This observation invites the possibility of 
simultaneously modeling the item response process and structural relations 
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TABLE 6 
Regression coefficients and t-values for the science data sets 

Regression coefficients f-values 

Two-step Two-step 
Two-step plausible Conditional Two-step plausible Conditional 

OLS values two-level OLS values two-level 

Matter 
Constant -0.999 -1.084 -1.085 -35.080 -29.123 -23.792 
GRADE 0.445 0.669 0.650 10.722 12.264 10.614 
SEX -0.023 -0.018 -0.036 -0.601 -0.346 0.619 
GRADE*SEX 0.030 0.003 0.050 0.529 0.370 0.594 
SES 0.142 0.215 0.212 6.949 5.948 6.989 
R2 0.24 0.33 0.39 

Force and Motion 
Constant -1.227 -1.307 -1.301 -32.125 -28.811 -21.803 
GRADE 0.490 0.654 0.637 8.541 9.188 8.502 
SEX 0.017 0.060 0.023 0.313 0.767 0.326 
GRADE*SEX 0.102 0.091 0.132 1.290 0.294 1.271 
SES 0.202 0.258 0.268 7.148 7.230 7.218 
R2 0.19 0.23 0.26 

Light and Sight 
Constant -0.446 -0.503 -0.513 -11.069 -9.401 -9.390 
GRADE 0.393 0.510 0.517 6.466 6.317 6.447 
SEX 0.020 0.033 0.025 0.357 0.419 0.346 
GRADE*SEX 0.067 0.097 0.096 0.800 0.875 0.876 
SES 0.178 0.242 0.236 6.162 5.536 6.171 
R2 0.13 0.17 0.18 

Regression coefficients r-values 

Two-step Two-step 
Two-step plausible Conditional Two-step plausible Conditional 

OLS values two-level OLS values two-level 

Core 
Constant 0.135 -0.127 -0.148 0.458 -3.288 -3.863 
JRADE 1.069 1.363 1.380 24.009 21.363 23.190 
>EX 0.240 0.282 0.299 5.860 4.343 5.631 
JRADE*SEX -0.106 -0.088 -0.106 -1.697 -0.864 -1.297 
>ES 0.349 0.469 0.462 15.811 16.704 15.644 
?2 0.35 0.44 0.46 

Earth and Space 
Constant -0.716 -0.746 -0.789 -20.753 -18.173 -16.490 
JRADE 0.510 0.631 0.657 9.815 9.783 9.713 
>EX -0.001 -0.052 -0.002 -0.237 -0.816 -0.031 
JRADE*SEX 0.100 0.193 0.136 1.340 1.858 1.404 
>ES 0.288 0.376 0.378 10.507 11.731 10.462 
?2 0.24 0.30 0.33 
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between variables. We have described how the approach, although differently 
motivated, is formally equivalent to that suggested by Mislevy (1985). We 
have also applied the method to a different class of measurement models, a 
class of generalized Rasch models described in Adams and Wilson (1996), 
which in one sense is more general and in another more restrictive than those 
that have been presented elsewhere. It is more general in the sense that the 
model we use is a very general polytomous model that can be applied to a 
very wide range of measurement contexts. It is more restrictive in the sense 
that it belongs to the Rasch family. 

In examining our approach to estimation, we have also been able to test 
the suitability of some approximate procedures that are currently employed 
in NAER For example, we have empirically shown that the consecutive 
estimation of item parameters followed by the population parameters produces 
item parameter estimates that can probably be treated as equivalent to those 
produced through a joint analysis. While this is a comforting finding, at least 
from a practical perspective, additional work does need to be done to formally 
investigate the relationship between the two different approaches to parameter 
estimation. Further, in both simulated and real examples, we have shown the 
similarity of direct estimates of population parameters and those recovered 
through the use of imputations (plausible values) for the unknown ability 
values. 

The models that we have considered deal only with a unidimensional 
latent variable. The methods that we employ can, however, be applied to 
multidimensional extensions of the RCML. The multidimensional extension 
of the model is reported in Wang (1994) and Adams, Wilson, and Wang (in 
press), and software for fitting these models with conditioning variables is 
described by Wu, Adams, and Wilson (1995). 

Having taken the multilevel perspective on item response modeling, the 
obvious next step is to consider the extension of the approach to more than 
two levels, so that hierarchical sample structures (e.g., students nested within 
classrooms) can be approxpriately considered. This we plan to do in the 
near future. Further, we will be considering the possibility of removing 
the assumptions of normality and considering semiparametric estimation of 
population distributions. 

Note 
'This clarification is due to an anonymous reviewer. 

APPENDIX 

In this Appendix we derive the observed information matrix for the model. We 
use the observed information in Newton steps and in estimating asymptotic standard 
errors for the maximum likelihood parameter estimates. 

To assist in the notation, we introduce the expectations 

Ez(t\Qn) = ^(0„, © 2 t exp{z'(be„ + A©} 
zefi 
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and 

£e (0 = > hQ(Qn; Y,„ £, p, a2lx„) </e„ 

and use £ to represent all of the model parameters. £ are their corresponding maximum 
likelihood estimates. Similarly, we use Ez(t/Qn) and E*n{t) to denote the above expecta­
tions evaluated at £. 

The following results are useful in deriving the elements of the information matrix: 

aiog/x(x„;gie,t) 
— = A'(x„ - £z(zie„)), 

a2 iog/x(xn; giej 

a2log/x(x,;gien) 

a2log/x(xn;gl6n) 
da2d£ 

= -A'(£z(zz'iej - £z(zl0n)£z(z'ien))A, 

= o, 

o, 

(Al) 

(A2) 

(A3) 

(A4) 

%(x„; gl6„) dlog/xfegie, , )^ 
ar = — 5 r — / x ( x - * I (U 

= (x£ - £z(z'l0n))A/x(xn; €ie„) from (Al), (A5) 

d/C*,; £ p, a2) 
= /(x„;Yn , iP,a2) 

d l o g / f e Y ^ f r a 2 ) 

d log/,(*,; $16,). = >fe Y„, fc p, a2) [ *W*g*V we-. ^ fc p§ a2|xJ dK 

from (10) 

= f(x„; Y„, £ p, a2) [ (xi - £2(z'ie„))A 11,(6,,; Y„, £ p, CT2IX„) dd„ 

= f(x„; Y„, | , p, a2)(x; - £» [£2(Z'I6„)])A, 

from (AI) 

(A6) 

a/»e(9„; Y„, fc p, g2lx„) a //»(x„; gie„)/e(e„IY„, p, g2) 
at' H'\ M,;Y„,fcp,a2) 

fa/x(x„; ?ie„) 
= /-2(x„;Y„,iP,a2) 

xy(x„;Y„,fcp,ff2) 

I a*' 
/e(ejY„, p, a2) 
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, aflx„;Y„,£ 
/x(x„; ?ie„)/,(e„iY„, p, a2) 7 

fa IOB /:.rx_: / 
= A8(e„; Y „ I, p 

;, P, cr2)l 

fa Iog/„(x„; |ie.) 
. o~lx„)-j -

a log/v, Y,„ i p i^l\ 
a|' 

= /,e(e„; Y„, £ p, cr2lx„) 

x |(x;-£,(z'ie„)) 

- J (x: - £2(z'l6„)) AB(e„; Y„, J, p, a2lx„) </9„}A 

from(Al)and(A6) 

= A^e,; Y,„ J, p, <x2lx„H I ^(z'16,,) />,(e„; Y„, g, p, a2lx„) «*B. W,x„){( 

z'ien)b Ez(z'ien)^A 

Me«; Y„, i p, (r2lxn){EeJ^(z'ie„)] - £z(z'ien)}A, (A7) 

dlog/e(ejYn, p,a2) Y„ 
ap a 2 <"• ' "P •;, 

a2 
log/e(e„IY„, 

apap 
J, o^ = YX 

CT2 ' 

a2 
log/e(9„IY„, 

3w2ap 
J, _^) = 

aa2 l a 2 (6" 

Y„ 
~ j (6. - Y, 

- Y; 

:p), 

P> 

(A8) 

(A9) 

(A 10) 

a/(x„; Y„, |, p, g2) a logy(x„; Y , g, p, g2) 
^ = ^ /(x„; Y„, | , p, a2) 

= /(x„; Y„, ?, p, a2) f (9„ - Ytf) ^ fc6(9„; Y„, $, p, g2lx„) </9„ 

from (11) and (A8) 

= /(x„; Y„, fc p, a2)(Ee„(e„) - Y,',P) ^ , (All) 
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Me(e„; Y„, £ p, o-2lx„) a //,(x„; £9„)/e(9„'v ft ^ v 

dp' ap' \ /(x„; Y„, |, 

8JY„, p, g2)\ 

£, P. a2) j 

, i d/e(8„IY„, p, a2) 
/"2(x„; Y„, £ p, cx2)|/x(x„; £I9„) J * % ' , 

X/(x„;Y„,£, p.cr2) 

, d/(x„; Y„, £ p, a2)'] 
-/«(x„; ?I9„)/6(9„IY„, p, CT2) ' * P -J 

u i a v t a 2, J d log/9(e„IY„, p, a2) 
= A6(9„; Y„, £ P, CT2IX„)J — ; 

d log/(x„; Y„, £ p, a2)} 

flp' J 

= /t9(e„; Y„, £ p, a2lx„)j(9„ - Ŷ P) ^ - (£e„(9„) - Ŷ p) ^ j 

from (A8) and (Al l ) 

= /!6(e„; Y„, £ p, a2lx„){6„ - Ee„(9„)) - ; , (A12) 

a 

dj(xn; Y„, £ p, g2) a log/(x„; Y„, £ p, g2) „ 

£5 = ^ Jfc.; Y„ £ P, a2) 

= - /(x„; Y„, | , p, a2) | ^ j (a2 - (8„ - Y^p)2) 

X /je(8„; Y„, £ p, <r2lx„) </8„ 

from (12) and (A 13) 

= /(x„; Y,„ £ p, a2) 

2a4 

X (ff2 - | (9„ - Y,',p)2 fc6(e„; Y„, | , p, cr2lx„) M,X (A 15) 
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and 

a/le(e„; Y„, t p, g2ix„) _ a //x(x„; ^ l e j / ^ e j v ^ p , a2) 
aa 2 S a 2 1 /(x„; Y„, £ p , a2) 

, P, a2){/ = /-2(x„;Y,,,S, p,a2)/x(x„;£ie„) 

X/(x„;Y„,|,p,a2) 

a/B(9„IY„, p, a2) 

da2 

- /x(xn; €'««) /B(8«IY„, p, a2) —2 \ 

= h^n; Y„, g, p, cr2lx„) 

a log^x,,; Y„, £ 

acx2 

a log/6(e„IY„, p, a2) 

3a2 

. P, cr2)! 
3a 2 

/!9(8„; Y„, £ p , cx2lx„) 

2<r4 

{(6. - Y^p)2 - J (6. - Y;p)2 /.6(e„; Y„, g, p, a2lx„) «».} . 

(A 16) 
from (A 13) and (A 15) 

Using the results (A1) - (A16) , we are now able to derive the elements of the observed 
information. 

J>2 

ag' ---if 'a* a?' A J9 

a iog/x(x„; lie,) 
n 

/J9(8„; Y„, | , p , o-2lx„) d0„ 

= 2 I 
n=\ 

a2 iog/x(x„; giej 
/!6(8„; Y„, g, p , cr2lx„) </6„ 

SDL1 log/x(x„; | i e . ) a w e . ; Y„, g, p , cx2lx, 

] 

= - A ' 2 

ag a$' 

£2(zz'ie„) - £,(zie„) £2(z'ie„) M0„; Y,„ g, p, a2ix„) de„ 

J (x„ - £2(zl9„))(£2(z'ie„) - £e„[El(z'l6„)]) /ie(6„; Y,„ £ P, a2lx„) dt)n A 

from (A1) , (A2) and (A7) 

= "A'2 i Ez(zz'\Qn) h»(d,-Ym $ £, a2\xn) dQn 
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- 2 I Ej,mn) £^»'iej A^e,; Y„, t-, p, a2ix„) </e„ (A 17) 

+ [ £,(zie„) Me„; v„, $, p, a2ix„) </e„ ( £2(z'ie„) Me„; Y,„ | , p, a2ix„) </e„ h 

which, evaluated at the maximum likelihood estimates, gives 

a2\ 
ara« = - A ' 2 

'5=5 

AT 

2 
n=\ 

EZ(ZZX) Me„; Y„, £ p, d2ix„) </en 

- 2 [ £z(zl0,f) Ez(z'ie„) hQ(Qn; Y„, | , p , d2lxn) </e„ 

+ EQ\Ez(mn)]L\Ez(z'\Qn)] (A18) 

a2\ 
ap'ap dp 

= 2 1 

fl log/6(9„; Y,„ p, a2) 

ap 
Me,,; Y„, £ p, ff2ix„) <*e„ 

a2log/9(e„;Y„,p,a2) 

ap'ap 

a iog/,(e„; Y„, p, J2) aft9(e„; Y„ , & 
ap ap 

: fte(9„; Y„, | , p , a2lx„) Mm 

Me.: Y„, g, p, a2ix„) rfe„ 

£^U] 

- | ^ (en - Y;P> {(e„ - Yip> - (£e(e„) - Y ; P » 

Y: 1 
X ^(6,,; Y„, & p , a 2 l x n ) ^ j e j , 

which, evaluated at the maximum likelihood estimates, gives 

d2\ 

(A19) 

from (A8), (A9) and (A 12) 

dp'dp 
N y Y' YY' 

= 2 T | (4(e„2) - £e(e„)2) T | - - r r 1 

„=i <r ô  o^ 
= A Y j : r£9(e^) - UK)2 J 

(A20) 

J ' J L ^ J L v f aiog/eCe^Y^pV) 
(da2)2 da2

 n e , J8B dv2 

a2log/e(0n;Yn,p,a2) 

M6„; Y„, g, p, a2lx„) dQn 

= 1 (da2)2 Me„; Y,„ g, p, a2lx„) dQn 
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t d log/9(en; Ym p, a2) dhQ(Qn; Y„ g, p, q2lx„) JA 

( da2 da2 

= s S 2& 
6 (a2 - 2(0„ - Yip)2) WO.; Y„ t P, cr2lxn) </0„ 

1 
4<r8 f (a2 - (6, - Y^) 2 ) /ie(0„; Y,„ £ p, a2lxn) 

Un - v;,p)2 - 1 (e. - v;p) 2 *,(e.; Y„, | , p , a2ix„) <*e„) <*e„ j 

from (A13), (A14) and (A16) 

( i (ff2 " 2(6" ~ Y:P)2) /,9(6"; Y"' * P' ̂  rf6" 
+ 4o» j (6" ~ Y"P)4 /l<,(6"; Y"' *' P' '̂"̂  *" 

~ 4 ? ( f (6" ~ Y"P)2 h"^n' Y"' ?* P' ff2|Xn) **") ]' 

So, using (12) and evaluating at the maximum likelihood estimates, we have 

(A21) 

a2x 
(3a2)' 

{ = { 
2<T4 4a8 „"£, 

(e„ - Y ; P ) 4 /i6(e„; Y„, £, p , a2ix„) </e„ 

- (6. - Y $ ) 2 /ie(6„; Y„, £ p, <x2lx„) <tt, (A22) 

a2x a £ f a iog/x(x„; gie„) 
»' A J, ap'ag ap' „ f , J9n a$ 

a iog/x(x„; gie„) 

/ie(6„; Y„, £, P, a2lx„) <*6„ 

= 1 fce(8„; Y„, | , p, a2lx„) ddn 

a log/„(x„; l ie,) hB(Qn; Y„, g, p, a2lx„) 

= A ' i f (x„ - £2(zl6„)) (6. - £e(8„)) ^ /.,(e„; Y„; g, p, cr2lx„)«».], (A23) 

from (Al), (A3) and (A 12) 
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which, evaluated at the maximum likelihood estimates, gives 

d2X 

ap'dSl 
= - A ' 2 ( f en£,(zl6n) ^e(e„; Y„, | , p, d2lx„) dQn - EQ[Ez(z\QJEQ(Qn)]) -^. 

=1 «=• \Je„ / a 

(A24) 

d(T2d% d<J2 

N f 

= 2 

a log/,(».; gie.) 
a* 

fl2 log/x(x„; | ie . ) 

/i(9„; Y„, | , B, o-2lx„) </6„ 

i. 
fla2 3 | 

a log/x(x„; |I6„) dh(Qn; Y„, £ 
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9 | 
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from (Al), (A4) and (A 16) 
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which, evaluated at the maximum likelihood estimates, gives 
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(A25) 
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A' .£ 
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= l Y/.P) h(K\ Y„, £, p, <r2\xn) dQn 

(e„ - v ; p ) (e„ - v;,p)2 - (e„ - Y;,p)2 /*e(e„; Y,„ £ p, a2ix„) </e„ 

(A27) 

2a6 

Xh(Qn;Yn,& p,a2 lxn) |^6n 

So, using (11) and evaluating at the maximum likelihood estimates, we get 

d2k 
da2apj OA6 2J 

1=1 
Y„(e„ - Y,;p)3 /*e(e„; Y „ g, p, <t2\xn) <nn 
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